Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-fluid modeling of heat transfer in bubbling fluidized bed with thermally-thick particles featuring intra-particle temperature inhomogeneity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27650%2F23%3A10251580" target="_blank" >RIV/61989100:27650/23:10251580 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1385894723005442?dgcid=coauthor#m0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894723005442?dgcid=coauthor#m0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2023.141813" target="_blank" >10.1016/j.cej.2023.141813</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-fluid modeling of heat transfer in bubbling fluidized bed with thermally-thick particles featuring intra-particle temperature inhomogeneity

  • Popis výsledku v původním jazyce

    The multi-fluid model has been widely used to study heat transfer between gas and solid in bubbling fluidized beds. However, zero-dimensional (0D) model has been commonly used. The model assumes a uniform temperature distribution, which is only reasonable for thermally-thin particles (Biot number (Bi) &lt; 1). However, one-dimensional (1D) model considering intra-particle temperature inhomogeneity inside particles is difficult to be implemented in multi-fluid model. To solve this issue, a corrected coefficient is introduced to quantitively feature the effects of intra-particle temperature inhomogeneity inside particles on external heat transfer, which forms a corrected 0D model. The corrected coefficient is correlated as a binary function of Bi and dimensionless temperature. The results of particle-scale modeling show that temperature profiles predicted by the corrected 0D model are the same as those of the 1D model for both thermally-thin and thermally-thick particles, while the 0D model overestimates heat transfer between particles and surrounding gas. The corrected 0D model is further implemented in the multi-fluid model to simulate particle cooling and heating process in bubbling fluidized beds. The results predicted by CFD simulations with both the 0D and the corrected 0D models are in good agreement with the experimental data of thermally-thin particles. For both the cooling and heating processes, a significant difference is observed for thermally-thick particles, indicating the importance of considering intra-particle temperature inhomogeneity in multi-fluid modeling. Consistent with the results of particle-scale modeling, the corrected 0D model predicts a smaller heat transfer rate between the gas and solid phases, as compared to the 0D model. Additionally, computational efficiency of the corrected 0D model is comparable to that of the 0D model.

  • Název v anglickém jazyce

    Multi-fluid modeling of heat transfer in bubbling fluidized bed with thermally-thick particles featuring intra-particle temperature inhomogeneity

  • Popis výsledku anglicky

    The multi-fluid model has been widely used to study heat transfer between gas and solid in bubbling fluidized beds. However, zero-dimensional (0D) model has been commonly used. The model assumes a uniform temperature distribution, which is only reasonable for thermally-thin particles (Biot number (Bi) &lt; 1). However, one-dimensional (1D) model considering intra-particle temperature inhomogeneity inside particles is difficult to be implemented in multi-fluid model. To solve this issue, a corrected coefficient is introduced to quantitively feature the effects of intra-particle temperature inhomogeneity inside particles on external heat transfer, which forms a corrected 0D model. The corrected coefficient is correlated as a binary function of Bi and dimensionless temperature. The results of particle-scale modeling show that temperature profiles predicted by the corrected 0D model are the same as those of the 1D model for both thermally-thin and thermally-thick particles, while the 0D model overestimates heat transfer between particles and surrounding gas. The corrected 0D model is further implemented in the multi-fluid model to simulate particle cooling and heating process in bubbling fluidized beds. The results predicted by CFD simulations with both the 0D and the corrected 0D models are in good agreement with the experimental data of thermally-thin particles. For both the cooling and heating processes, a significant difference is observed for thermally-thick particles, indicating the importance of considering intra-particle temperature inhomogeneity in multi-fluid modeling. Consistent with the results of particle-scale modeling, the corrected 0D model predicts a smaller heat transfer rate between the gas and solid phases, as compared to the 0D model. Additionally, computational efficiency of the corrected 0D model is comparable to that of the 0D model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20700 - Environmental engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical engineering journal

  • ISSN

    1385-8947

  • e-ISSN

    1873-3212

  • Svazek periodika

    460

  • Číslo periodika v rámci svazku

    15. 3. 2023

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000942498900001

  • EID výsledku v databázi Scopus