Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27650%2F23%3A10253146" target="_blank" >RIV/61989100:27650/23:10253146 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/16/15/5835" target="_blank" >https://www.mdpi.com/1996-1073/16/15/5835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en16155835" target="_blank" >10.3390/en16155835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Popis výsledku v původním jazyce
This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance assessment, and machine learning techniques. To further enhance the understanding and modeling of the decomposition process, the researchers determine the apparent decomposition rate constant, which is incorporated into a kinetic model using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that higher input discharge power and longer residence time result in increased tar analogue compound (TAC) decomposition. The results indicate that higher input discharge power leads to a significant improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved very good agreement with the experiments, showing a decomposition rate of 83.01%. The model flagged potential hotspots at 15% and 25% of the reactor's length, which is important in terms of engineering design of scaled-up reactors.
Název v anglickém jazyce
Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Popis výsledku anglicky
This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance assessment, and machine learning techniques. To further enhance the understanding and modeling of the decomposition process, the researchers determine the apparent decomposition rate constant, which is incorporated into a kinetic model using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that higher input discharge power and longer residence time result in increased tar analogue compound (TAC) decomposition. The results indicate that higher input discharge power leads to a significant improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved very good agreement with the experiments, showing a decomposition rate of 83.01%. The model flagged potential hotspots at 15% and 25% of the reactor's length, which is important in terms of engineering design of scaled-up reactors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
1996-1073
Svazek periodika
16
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
001045397000001
EID výsledku v databázi Scopus
2-s2.0-85167806677