Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combined control of PM and NOx emissions from small-scale combustions by electrostatic precipitation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27650%2F24%3A10255745" target="_blank" >RIV/61989100:27650/24:10255745 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2590123024015093?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024015093?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.103255" target="_blank" >10.1016/j.rineng.2024.103255</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combined control of PM and NOx emissions from small-scale combustions by electrostatic precipitation

  • Popis výsledku v původním jazyce

    Electrostatic precipitators (ESPs) have demonstrated promise in reducing particulate matter (PM) emissions, but their potential for simultaneously reducing NOx in small-scale combustion systems remains largely unexplored. This study examines the potential of ESP with DC corona discharge of negative polarity to reduce both PM and NOx emissions from small-scale combustion. A chemical kinetic model is first developed to predict NOx removal in the ESP. The model accounts for the non-uniform electric field distribution and inhomogeneity of non-thermal plasma in chemical kinetic while remaining simple enough for practical engineering applications. This allows for the optimisation of ESP parameters during the initial design phase. Using this model, the ESP was developed and applied with different energisation regimes to control emissions from a 15 kW pellet combustion heating unit. The initial concentrations for PM and NOx were 48 mg/m3 and 305 mg/m3, respectively (0 oC, 101.3 kPa; at reference O2 = 10 %vol.). The efficiency of the ESP was both theoretically and experimentally determined for various operational regimes at voltages ranging from 6.8 to 11 kV. At 11 kV, the ESP demonstrated a PM removal efficiency of 99.99 % and a NOx removal efficiency of 38 %, achieving compliance with Ecodesign Directive limits. The model&apos;s predictions showed reasonable agreement with experimental data, with a slight miscalculation for both particle precipitation and NOx removal. These findings have significant implications for the design and operation of ESPs in small-scale biomass combustion systems, offering a foundation for optimising these devices for combined NOx and particulate matter control.

  • Název v anglickém jazyce

    Combined control of PM and NOx emissions from small-scale combustions by electrostatic precipitation

  • Popis výsledku anglicky

    Electrostatic precipitators (ESPs) have demonstrated promise in reducing particulate matter (PM) emissions, but their potential for simultaneously reducing NOx in small-scale combustion systems remains largely unexplored. This study examines the potential of ESP with DC corona discharge of negative polarity to reduce both PM and NOx emissions from small-scale combustion. A chemical kinetic model is first developed to predict NOx removal in the ESP. The model accounts for the non-uniform electric field distribution and inhomogeneity of non-thermal plasma in chemical kinetic while remaining simple enough for practical engineering applications. This allows for the optimisation of ESP parameters during the initial design phase. Using this model, the ESP was developed and applied with different energisation regimes to control emissions from a 15 kW pellet combustion heating unit. The initial concentrations for PM and NOx were 48 mg/m3 and 305 mg/m3, respectively (0 oC, 101.3 kPa; at reference O2 = 10 %vol.). The efficiency of the ESP was both theoretically and experimentally determined for various operational regimes at voltages ranging from 6.8 to 11 kV. At 11 kV, the ESP demonstrated a PM removal efficiency of 99.99 % and a NOx removal efficiency of 38 %, achieving compliance with Ecodesign Directive limits. The model&apos;s predictions showed reasonable agreement with experimental data, with a slight miscalculation for both particle precipitation and NOx removal. These findings have significant implications for the design and operation of ESPs in small-scale biomass combustion systems, offering a foundation for optimising these devices for combined NOx and particulate matter control.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS07010272" target="_blank" >SS07010272: Výzkum vhodných a nevhodných postupů vytápění pevnými palivy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

    2590-1230

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    December 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    103255-103269

  • Kód UT WoS článku

    001350303300001

  • EID výsledku v databázi Scopus