An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F22%3A10250519" target="_blank" >RIV/61989100:27690/22:10250519 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0959652622033480" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652622033480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2022.133771" target="_blank" >10.1016/j.jclepro.2022.133771</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide
Popis výsledku v původním jazyce
Geopolymer is a potential substitute for high-emission cement production. Therefore, the use of fly ash with high emission as a geopolymer is an environmentally friendly and inexpensive direction. However, fly ash (FA) is a high amorphous precursor with low pozzolanic reactivity making it difficult to be activated by calcium hydroxide. In this study, the coupling of wet-milling mechanical force and calcium hydroxide was used to prepare high-performance alkaline calcium activated geopolymers. Two kinds of FA slurries with different particle sizes of D50 = 2.96 μm and 14.2 μm were prepared, activated by calcium hydroxide (CH) with the content of 4%, 11% and 19%. Results indicated that the increase of calcium hydroxide content was beneficial to developing strength, effectively improving the chloride resistance, compacting the microstructure, but increasing the autogenous shrinkage of the geopolymers. These improvements are especially apparent in the wet-milled fly ash geopolymers (WFA) due to the pre-depolymerization implemented by wet-milled mechanical forces, and coupled with the activation effect of CH to improve the depolymerization efficiency and condensation reaction. The compressive strength of WF-CH-19 was three times higher than that of FA-CH-19, reaching 29.3 MPa at 28 d, and the compressive strength growth of WF-CH-11 even reached 591.67% at 1 d. Meanwhile, the main chain length (MCL) and Al/Si of calcium silicate hydrates were clearly improved, and pore structure was significantly refined with capillary pore increased from 29.79% to 89.23%. In addition, FA and WFA geopolymers have significant advantages over Portland cement in the environmental impact indicators such as E-energy and E-CO2. (C) 2022 Elsevier Ltd
Název v anglickém jazyce
An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide
Popis výsledku anglicky
Geopolymer is a potential substitute for high-emission cement production. Therefore, the use of fly ash with high emission as a geopolymer is an environmentally friendly and inexpensive direction. However, fly ash (FA) is a high amorphous precursor with low pozzolanic reactivity making it difficult to be activated by calcium hydroxide. In this study, the coupling of wet-milling mechanical force and calcium hydroxide was used to prepare high-performance alkaline calcium activated geopolymers. Two kinds of FA slurries with different particle sizes of D50 = 2.96 μm and 14.2 μm were prepared, activated by calcium hydroxide (CH) with the content of 4%, 11% and 19%. Results indicated that the increase of calcium hydroxide content was beneficial to developing strength, effectively improving the chloride resistance, compacting the microstructure, but increasing the autogenous shrinkage of the geopolymers. These improvements are especially apparent in the wet-milled fly ash geopolymers (WFA) due to the pre-depolymerization implemented by wet-milled mechanical forces, and coupled with the activation effect of CH to improve the depolymerization efficiency and condensation reaction. The compressive strength of WF-CH-19 was three times higher than that of FA-CH-19, reaching 29.3 MPa at 28 d, and the compressive strength growth of WF-CH-11 even reached 591.67% at 1 d. Meanwhile, the main chain length (MCL) and Al/Si of calcium silicate hydrates were clearly improved, and pore structure was significantly refined with capillary pore increased from 29.79% to 89.23%. In addition, FA and WFA geopolymers have significant advantages over Portland cement in the environmental impact indicators such as E-energy and E-CO2. (C) 2022 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
372
Číslo periodika v rámci svazku
October 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
nestrankovano
Kód UT WoS článku
000911719600003
EID výsledku v databázi Scopus
2-s2.0-85137060814