Evolution of dislocation structure determined by neutron diffraction line profile analysis during tensile deformation in quenched and tempered martensitic steels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F22%3A10250523" target="_blank" >RIV/61989100:27690/22:10250523 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921509322011789" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921509322011789</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2022.143795" target="_blank" >10.1016/j.msea.2022.143795</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolution of dislocation structure determined by neutron diffraction line profile analysis during tensile deformation in quenched and tempered martensitic steels
Popis výsledku v původním jazyce
The role of the dislocation structure on the work-hardening behavior during the tensile deformation of quenched and tempered martensite was studied. The evolution of the dislocation structure during tensile deformation at room temperature in ultralow-carbon 18 mass%Ni martensitic steels under the conditions of as-quenched by sub-zero-treatment (SZ) and quenched-and-tempered at 573 and 773 K (T573 and T773, respectively) was monitored using in situ time-of-flight neutron diffraction combined with the convolutional multiple whole profile (CMWP) procedure. The changes in the dislocation parameters due to tempering and deformation obtained by the CMWP procedure were explained by the metallurgical phenomena of body-centered cubic iron. The elastic limit increased in the order SZ, T573, and T773, whereas the dislocation density decreased in the opposite order, indicating that the elastic limit is not always dependent on the total dislocation density of martensite. The dislocation density in SZ, which showed a high level of work hardening after yielding, hardly changed during tensile deformation, whereas that in T573 and T773 increased with tensile straining. The dislocation arrangement parameter that represents the interaction among the dislocations was high before deformation and decreased during deformation in materials SZ and T573, whereas the parameter was maintained at a low value during the entire deformation in material T773. Large and small values of the dislocation arrangement parameter indicate weak and strong interactions, respectively. The dislocation arrangement parameter is considered helpful for estimating the increment in strength of martensitic steels by dislocation strengthening, as the coefficient α in Taylor's equation, for both the as-quenched and tempered conditions. (C) 2022 Elsevier B.V.
Název v anglickém jazyce
Evolution of dislocation structure determined by neutron diffraction line profile analysis during tensile deformation in quenched and tempered martensitic steels
Popis výsledku anglicky
The role of the dislocation structure on the work-hardening behavior during the tensile deformation of quenched and tempered martensite was studied. The evolution of the dislocation structure during tensile deformation at room temperature in ultralow-carbon 18 mass%Ni martensitic steels under the conditions of as-quenched by sub-zero-treatment (SZ) and quenched-and-tempered at 573 and 773 K (T573 and T773, respectively) was monitored using in situ time-of-flight neutron diffraction combined with the convolutional multiple whole profile (CMWP) procedure. The changes in the dislocation parameters due to tempering and deformation obtained by the CMWP procedure were explained by the metallurgical phenomena of body-centered cubic iron. The elastic limit increased in the order SZ, T573, and T773, whereas the dislocation density decreased in the opposite order, indicating that the elastic limit is not always dependent on the total dislocation density of martensite. The dislocation density in SZ, which showed a high level of work hardening after yielding, hardly changed during tensile deformation, whereas that in T573 and T773 increased with tensile straining. The dislocation arrangement parameter that represents the interaction among the dislocations was high before deformation and decreased during deformation in materials SZ and T573, whereas the parameter was maintained at a low value during the entire deformation in material T773. Large and small values of the dislocation arrangement parameter indicate weak and strong interactions, respectively. The dislocation arrangement parameter is considered helpful for estimating the increment in strength of martensitic steels by dislocation strengthening, as the coefficient α in Taylor's equation, for both the as-quenched and tempered conditions. (C) 2022 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science and Engineering. A, Structural Materials : Properties, Microstructure and Processing
ISSN
0921-5093
e-ISSN
0921-5093
Svazek periodika
854
Číslo periodika v rámci svazku
September 2022
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
nestrankovano
Kód UT WoS článku
000874759900002
EID výsledku v databázi Scopus
2-s2.0-85136247656