Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10247683" target="_blank" >RIV/61989100:27710/21:10247683 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=21&SID=E6RN3qxLI555hWL7GaF&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=21&SID=E6RN3qxLI555hWL7GaF&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12274-021-3655-x" target="_blank" >10.1007/s12274-021-3655-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family
Popis výsledku v původním jazyce
Graphene doping continues to gather momentum because it enables graphene properties to be tuned, thereby affording new properties to, improve the performance of, and expand the application potential of graphene. Graphene can be chemically doped using various methods such as surface functionalization, hybrid composites (e.g., nanoparticle decoration), and substitution doping, wherein C atoms are replaced by foreign ones in the graphene lattice. Theoretical works have predicted that graphene could be substitutionally doped by aluminum (Al) atoms, which could hold promise for exciting applications, including hydrogen storage and evolution, and supercapacitors. Other theoretical predictions suggest that Al substitutionally doped graphene (AlG) could serve as a material for gas sensors and the catalytic decomposition of undesirable materials. However, fabricating Al substitutionally doped graphene has proven challenging until now. Herein, we demonstrate how controlled-flow chemical vapor deposition (CVD) implementing a simple solid precursor can yield high-quality and large-area monolayer AlG, and this synthesis is unequivocally confirmed using various characterization methods including local electron energy-loss spectroscopy (EELS). Detailed high-resolution transmission electron microscopy (HRTEM) shows numerous bonding configurations between the Al atoms and the graphene lattice, some of which are not theoretically predicted. Furthermore, the produced AlG shows a CO2 capturability superior to those of other substitutionally doped graphenes. [Figure not available: see fulltext.] (C) 2021, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Název v anglickém jazyce
Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family
Popis výsledku anglicky
Graphene doping continues to gather momentum because it enables graphene properties to be tuned, thereby affording new properties to, improve the performance of, and expand the application potential of graphene. Graphene can be chemically doped using various methods such as surface functionalization, hybrid composites (e.g., nanoparticle decoration), and substitution doping, wherein C atoms are replaced by foreign ones in the graphene lattice. Theoretical works have predicted that graphene could be substitutionally doped by aluminum (Al) atoms, which could hold promise for exciting applications, including hydrogen storage and evolution, and supercapacitors. Other theoretical predictions suggest that Al substitutionally doped graphene (AlG) could serve as a material for gas sensors and the catalytic decomposition of undesirable materials. However, fabricating Al substitutionally doped graphene has proven challenging until now. Herein, we demonstrate how controlled-flow chemical vapor deposition (CVD) implementing a simple solid precursor can yield high-quality and large-area monolayer AlG, and this synthesis is unequivocally confirmed using various characterization methods including local electron energy-loss spectroscopy (EELS). Detailed high-resolution transmission electron microscopy (HRTEM) shows numerous bonding configurations between the Al atoms and the graphene lattice, some of which are not theoretically predicted. Furthermore, the produced AlG shows a CO2 capturability superior to those of other substitutionally doped graphenes. [Figure not available: see fulltext.] (C) 2021, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institut environmentálních technologií - excelentní výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano Research
ISSN
1998-0124
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
7/2021
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
10
Strana od-do
1310-1318
Kód UT WoS článku
000678455000001
EID výsledku v databázi Scopus
2-s2.0-85111273423