Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O-2 Battery under a High Rate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10249623" target="_blank" >RIV/61989100:27710/21:10249623 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000751890100080" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000751890100080</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsnano.1c06896" target="_blank" >10.1021/acsnano.1c06896</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O-2 Battery under a High Rate
Popis výsledku v původním jazyce
Lithium-oxygen batteries (LOBs) with ultrahigh theoretical energy density have emerged as one appealing candidate for next-generation energy storage devices. Unfortunately, some fundamental issues remain unsettled, involving large overpotential and inferior rate capability, mainly induced by the sluggish reaction kinetics and parasitic reactions at the cathode. Hence, the pursuit of suitable catalyst capable of efficiently catalyzing the oxygen redox reaction and eliminating the side-product generation, become urgent for the development of LOBs. Here, we report a universal synthesis approach to fabricate a suite of mildly oxidized MXenes (mo-Nb2CTx, mo-Ti3C2Tx, and mo-V2CTx) as cathode catalysts for LOBs. The readily prepared mo-MXenes possess expanded interlayer distance to accommodate massive Li2O2 formation, and in-situ-formed light metal oxide to enhance the electrocatalytic activity of MXenes. Taken together, the mo-V2CTx manages to deliver a high specific capacity of 22752 mAh g(-1) at a current density of 100 mA g(-1), and a long lifespan of 100 cycles at 500 mA g(-1). More impressively, LOBs with mo-V 2 CT x can continuously operate for 90, 89, and 70 cycles, respectively, under a high current density of 1000, 2000, and 3000 mA g(-1) with a cutoff capacity of 1000 mAh g(-1). The theoretical calculations further reveal the underlying mechanism lies in the optimized surface, where the overpotentials for the formation/decomposition of Li2O2 are significantly reduced and the catalytic kinetics is accelerated. This contribution offers a feasible strategy to prepare MXenes as efficient and robust electrocatalyst toward advanced LOBs and other energy storage devices.
Název v anglickém jazyce
Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O-2 Battery under a High Rate
Popis výsledku anglicky
Lithium-oxygen batteries (LOBs) with ultrahigh theoretical energy density have emerged as one appealing candidate for next-generation energy storage devices. Unfortunately, some fundamental issues remain unsettled, involving large overpotential and inferior rate capability, mainly induced by the sluggish reaction kinetics and parasitic reactions at the cathode. Hence, the pursuit of suitable catalyst capable of efficiently catalyzing the oxygen redox reaction and eliminating the side-product generation, become urgent for the development of LOBs. Here, we report a universal synthesis approach to fabricate a suite of mildly oxidized MXenes (mo-Nb2CTx, mo-Ti3C2Tx, and mo-V2CTx) as cathode catalysts for LOBs. The readily prepared mo-MXenes possess expanded interlayer distance to accommodate massive Li2O2 formation, and in-situ-formed light metal oxide to enhance the electrocatalytic activity of MXenes. Taken together, the mo-V2CTx manages to deliver a high specific capacity of 22752 mAh g(-1) at a current density of 100 mA g(-1), and a long lifespan of 100 cycles at 500 mA g(-1). More impressively, LOBs with mo-V 2 CT x can continuously operate for 90, 89, and 70 cycles, respectively, under a high current density of 1000, 2000, and 3000 mA g(-1) with a cutoff capacity of 1000 mAh g(-1). The theoretical calculations further reveal the underlying mechanism lies in the optimized surface, where the overpotentials for the formation/decomposition of Li2O2 are significantly reduced and the catalytic kinetics is accelerated. This contribution offers a feasible strategy to prepare MXenes as efficient and robust electrocatalyst toward advanced LOBs and other energy storage devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institut environmentálních technologií - excelentní výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Nano
ISSN
1936-0851
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
19640-19650
Kód UT WoS článku
000751890100080
EID výsledku v databázi Scopus
—