A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10248287" target="_blank" >RIV/61989100:27710/22:10248287 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/22:10248287
Výsledek na webu
<a href="https://doi.org/10.1016/j.jece.2021.106917" target="_blank" >https://doi.org/10.1016/j.jece.2021.106917</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2021.106917" target="_blank" >10.1016/j.jece.2021.106917</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products
Popis výsledku v původním jazyce
Disposal of huge amounts of diverse wastes for reduced costs accompanied with gaining of energy and valuable chemicals is an eager topic in waste-to-energy and fuel business. Microwave pyrolysis is a thermochemical route providing such benefits. Waste scrap tyres (ST) and cocoa pod husk (CPH) as polymer and biomass representatives were pyrolyzed in microwave reactor at 440 W power for 30 min. Quantity and quality of pyrolysis products (gas, oil, and carbon black) were investigated. It was revealed, while set microwave pyrolysis conditions are sufficient for maximum decomposition of ST to pyrolysis products, it is necessary to optimize them for CPH. The gas produced by microwave pyrolysis of ST contains more H2 and CH4 than from conventional pyrolysis, thus, microwave pyrolysis is an effective tool for production of a fuel gas. The oil obtained by ST microwave pyrolysis is a complex mixture of mostly nonpolar aromatic compounds (toluene, benzene, limonene, styrene, o-xylene), while the oil obtained by CPH microwave pyrolysis contains mainly p-cresol, phenol and its derivatives. The ST-derived carbon black shows a well-established large-volume mesoporous-macroporous structure. The CPH-derived carbon black is a low-volume macroporous material with very well-developed microporosity. A higher gross calorific value of microwave ST-derived carbon black in comparison to conventionally prepared one is caused by its higher graphitization rate. Since the surface of ST-derived carbon black is more polar than CPH-derived one and with respect to chemical purity, it could be more suitable adsorbent for polar volatile organic compounds from gaseous emissions. It is necessary to develop a microporosity in ST-derived carbon black.
Název v anglickém jazyce
A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products
Popis výsledku anglicky
Disposal of huge amounts of diverse wastes for reduced costs accompanied with gaining of energy and valuable chemicals is an eager topic in waste-to-energy and fuel business. Microwave pyrolysis is a thermochemical route providing such benefits. Waste scrap tyres (ST) and cocoa pod husk (CPH) as polymer and biomass representatives were pyrolyzed in microwave reactor at 440 W power for 30 min. Quantity and quality of pyrolysis products (gas, oil, and carbon black) were investigated. It was revealed, while set microwave pyrolysis conditions are sufficient for maximum decomposition of ST to pyrolysis products, it is necessary to optimize them for CPH. The gas produced by microwave pyrolysis of ST contains more H2 and CH4 than from conventional pyrolysis, thus, microwave pyrolysis is an effective tool for production of a fuel gas. The oil obtained by ST microwave pyrolysis is a complex mixture of mostly nonpolar aromatic compounds (toluene, benzene, limonene, styrene, o-xylene), while the oil obtained by CPH microwave pyrolysis contains mainly p-cresol, phenol and its derivatives. The ST-derived carbon black shows a well-established large-volume mesoporous-macroporous structure. The CPH-derived carbon black is a low-volume macroporous material with very well-developed microporosity. A higher gross calorific value of microwave ST-derived carbon black in comparison to conventionally prepared one is caused by its higher graphitization rate. Since the surface of ST-derived carbon black is more polar than CPH-derived one and with respect to chemical purity, it could be more suitable adsorbent for polar volatile organic compounds from gaseous emissions. It is necessary to develop a microporosity in ST-derived carbon black.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Chemical Engineering
ISSN
2213-3437
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000730999300008
EID výsledku v databázi Scopus
—