Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: A description for different feedstocks, catalysts and operation modes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10250007" target="_blank" >RIV/61989100:27710/22:10250007 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S014139102200163X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S014139102200163X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.polymdegradstab.2022.109981" target="_blank" >10.1016/j.polymdegradstab.2022.109981</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: A description for different feedstocks, catalysts and operation modes
Popis výsledku v původním jazyce
Chemical recycling by thermo-catalytic pyrolysis/degradation offers the possibility of converting waste plastics into their original monomers or other valuable chemicals which can be used as feedstocks in chemical and petrochemical industries. Plastic wastes of polystyrene (PS) based materials can be a good source of styrene as well as mono-aromatic (BTEX: benzene, toluene, ethylbenzene, xylenes) compounds. The selectivity of pyrolysis products can be tuned by choosing the right catalyst as well as appropriate operating conditions/operation modes. In this regard, the focus of the present work was to perform thermo-catalytic pyrolysis of different waste polystyrene (WPS) feedstocks over acid and base catalysts employed in ex-situ and in-situ modes. The main goal was to compare the compositions of pyrolysis products obtained by changing feedstocks, catalysts and operation modes. A further goal was to discuss the suitability of the catalysts employed for the enhanced recovery of desired products from WPS pyrolysis. It was demonstrated that expanded polystyrene gives very similar product distribution as compared to virgin PS, both giving high styrene content. Likewise, hard PS-based random packing materials produce similar results as compared to high impact polystyrene (HIPS). Moreover, it was shown that solid base catalysts influence the composition of the pyrolysis products only slightly as compared to thermolysis. Solid acid catalyst however, showed significant impact on the composition of the pyrolysis products as compared to non-catalytic pyrolysis. These results may provide new insights for the chemical recycling of plastic wastes. (C) 2022 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: A description for different feedstocks, catalysts and operation modes
Popis výsledku anglicky
Chemical recycling by thermo-catalytic pyrolysis/degradation offers the possibility of converting waste plastics into their original monomers or other valuable chemicals which can be used as feedstocks in chemical and petrochemical industries. Plastic wastes of polystyrene (PS) based materials can be a good source of styrene as well as mono-aromatic (BTEX: benzene, toluene, ethylbenzene, xylenes) compounds. The selectivity of pyrolysis products can be tuned by choosing the right catalyst as well as appropriate operating conditions/operation modes. In this regard, the focus of the present work was to perform thermo-catalytic pyrolysis of different waste polystyrene (WPS) feedstocks over acid and base catalysts employed in ex-situ and in-situ modes. The main goal was to compare the compositions of pyrolysis products obtained by changing feedstocks, catalysts and operation modes. A further goal was to discuss the suitability of the catalysts employed for the enhanced recovery of desired products from WPS pyrolysis. It was demonstrated that expanded polystyrene gives very similar product distribution as compared to virgin PS, both giving high styrene content. Likewise, hard PS-based random packing materials produce similar results as compared to high impact polystyrene (HIPS). Moreover, it was shown that solid base catalysts influence the composition of the pyrolysis products only slightly as compared to thermolysis. Solid acid catalyst however, showed significant impact on the composition of the pyrolysis products as compared to non-catalytic pyrolysis. These results may provide new insights for the chemical recycling of plastic wastes. (C) 2022 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institut environmentálních technologií - excelentní výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymer Degradation and Stability
ISSN
0141-3910
e-ISSN
1873-2321
Svazek periodika
201
Číslo periodika v rámci svazku
July 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
nestrankovano
Kód UT WoS článku
000808400500007
EID výsledku v databázi Scopus
—