Atomically Dispersed Cerium Sites Immobilized on Vanadium Vacancies of Monolayer Nickel-Vanadium Layered Double Hydroxide: Accelerating Water Splitting Kinetics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F23%3A10253522" target="_blank" >RIV/61989100:27710/23:10253522 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85174973946&origin=resultslist&sort=plf-f&src=s&sid=881db3789ccc847267fb37586bc37fff&sot=b&sdt=cl&s=AUTHOR-NAME%28M.H.+rummeli%29&sl=25&sessionSearchId=881db3789ccc847267fb37586bc37fff&relpos=18#funding-details" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85174973946&origin=resultslist&sort=plf-f&src=s&sid=881db3789ccc847267fb37586bc37fff&sot=b&sdt=cl&s=AUTHOR-NAME%28M.H.+rummeli%29&sl=25&sessionSearchId=881db3789ccc847267fb37586bc37fff&relpos=18#funding-details</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202308533" target="_blank" >10.1002/adfm.202308533</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomically Dispersed Cerium Sites Immobilized on Vanadium Vacancies of Monolayer Nickel-Vanadium Layered Double Hydroxide: Accelerating Water Splitting Kinetics
Popis výsledku v původním jazyce
Rational design of efficient single-atom catalysts is a potential avenue to mitigate the sluggish oxygen evolution reaction (OER) kinetics. Adopting appropriate matrixes to stabilize the single-atom active centers with the optimized geometric and electronic structure plays an essential role in enhancing catalytic activities. Herein, massive isolated Ce atoms are successfully anchored on monolayer nickel-vanadium layered double hydroxide support (Ce SAs/m-NiV LDH) via the vanadium defects trapping strategy, resulting in stabilized Ce single-atom with the maximum loading of 8.07 wt.%. Benefitting from the strong synergetic electronic interaction between Ce single atoms and monolayer NiV LDH matrix, thus-prepared catalyst possesses favorable OER (209 mV @ 10 mA cm-2) and water electrolysis performance (1.47 V @ 10 mA cm-2), surpassing other catalysts and even the commercial RuO2 catalyst. Density functional theory (DFT) calculations in combination with in situ electrochemical impedance spectroscopy analysis reveal that the immobilization of monatomic Ce can effectively narrow the band gap and strengthen the density states near the Fermi level as well as more easily adsorb the surficial OH-, leading to a lower charge transfer barrier and faster water splitting kinetics. The novel V vacancies trapped Ce single-atom catalyst is successfully constructed on the monolayer nickel-vanadium layered double hydroxide (NiV LDH). The physicochemical characterization and theoretical calculations demonstrate that the incorporation of single Ce atoms delivers a positive effect. Specifically, the synergistic effect results from the strong electronic coupling interactions between the Ce single-atom and monolayer NiV LDH matrix inducing an enhanced water electrolysis kinetics.image
Název v anglickém jazyce
Atomically Dispersed Cerium Sites Immobilized on Vanadium Vacancies of Monolayer Nickel-Vanadium Layered Double Hydroxide: Accelerating Water Splitting Kinetics
Popis výsledku anglicky
Rational design of efficient single-atom catalysts is a potential avenue to mitigate the sluggish oxygen evolution reaction (OER) kinetics. Adopting appropriate matrixes to stabilize the single-atom active centers with the optimized geometric and electronic structure plays an essential role in enhancing catalytic activities. Herein, massive isolated Ce atoms are successfully anchored on monolayer nickel-vanadium layered double hydroxide support (Ce SAs/m-NiV LDH) via the vanadium defects trapping strategy, resulting in stabilized Ce single-atom with the maximum loading of 8.07 wt.%. Benefitting from the strong synergetic electronic interaction between Ce single atoms and monolayer NiV LDH matrix, thus-prepared catalyst possesses favorable OER (209 mV @ 10 mA cm-2) and water electrolysis performance (1.47 V @ 10 mA cm-2), surpassing other catalysts and even the commercial RuO2 catalyst. Density functional theory (DFT) calculations in combination with in situ electrochemical impedance spectroscopy analysis reveal that the immobilization of monatomic Ce can effectively narrow the band gap and strengthen the density states near the Fermi level as well as more easily adsorb the surficial OH-, leading to a lower charge transfer barrier and faster water splitting kinetics. The novel V vacancies trapped Ce single-atom catalyst is successfully constructed on the monolayer nickel-vanadium layered double hydroxide (NiV LDH). The physicochemical characterization and theoretical calculations demonstrate that the incorporation of single Ce atoms delivers a positive effect. Specifically, the synergistic effect results from the strong electronic coupling interactions between the Ce single-atom and monolayer NiV LDH matrix inducing an enhanced water electrolysis kinetics.image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
2023
Číslo periodika v rámci svazku
16.12.2023
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001090666200001
EID výsledku v databázi Scopus
—