Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F24%3A10255308" target="_blank" >RIV/61989100:27710/24:10255308 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/24:10255308
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2590174524001296" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590174524001296</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecmx.2024.100651" target="_blank" >10.1016/j.ecmx.2024.100651</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
Popis výsledku v původním jazyce
CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas-liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g . L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g . L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.
Název v anglickém jazyce
Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed
Popis výsledku anglicky
CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas-liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g . L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g . L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-24268K" target="_blank" >GF21-24268K: Přeměna CO2 na užitečné chemikálie katalytickými a fotokatalytickými procesy v přítomnosti vysoce aktivních materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy Conversion and Management-X
ISSN
2590-1745
e-ISSN
2590-1745
Svazek periodika
23
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
nestránkováno
Kód UT WoS článku
001262479800001
EID výsledku v databázi Scopus
2-s2.0-85197355207