Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F24%3A10255308" target="_blank" >RIV/61989100:27710/24:10255308 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27360/24:10255308

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2590174524001296" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590174524001296</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecmx.2024.100651" target="_blank" >10.1016/j.ecmx.2024.100651</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed

  • Popis výsledku v původním jazyce

    CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas-liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g . L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g . L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.

  • Název v anglickém jazyce

    Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed

  • Popis výsledku anglicky

    CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas-liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g . L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g . L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-24268K" target="_blank" >GF21-24268K: Přeměna CO2 na užitečné chemikálie katalytickými a fotokatalytickými procesy v přítomnosti vysoce aktivních materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Conversion and Management-X

  • ISSN

    2590-1745

  • e-ISSN

    2590-1745

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001262479800001

  • EID výsledku v databázi Scopus

    2-s2.0-85197355207