Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F24%3A10255687" target="_blank" >RIV/61989100:27710/24:10255687 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001326958200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001326958200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/smll.202406309" target="_blank" >10.1002/smll.202406309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries
Popis výsledku v původním jazyce
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (ALMOST EQUAL TO300 mAh gMINUS SIGN 1 at 10 A gMINUS SIGN 1) and a prolonged fast-charging lifespan (862.82 mAh gMINUS SIGN 1 at 5 A gMINUS SIGN 1 after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs. (C) 2024 The Author(s). Small published by Wiley-VCH GmbH.
Název v anglickém jazyce
Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries
Popis výsledku anglicky
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (ALMOST EQUAL TO300 mAh gMINUS SIGN 1 at 10 A gMINUS SIGN 1) and a prolonged fast-charging lifespan (862.82 mAh gMINUS SIGN 1 at 5 A gMINUS SIGN 1 after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs. (C) 2024 The Author(s). Small published by Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21000 - Nano-technology
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Small
ISSN
1613-6810
e-ISSN
1613-6829
Svazek periodika
2406309
Číslo periodika v rámci svazku
September 2024
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001326958200001
EID výsledku v databázi Scopus
2-s2.0-85205341257