Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F24%3A10255687" target="_blank" >RIV/61989100:27710/24:10255687 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001326958200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001326958200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smll.202406309" target="_blank" >10.1002/smll.202406309</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

  • Popis výsledku v původním jazyce

    Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (ALMOST EQUAL TO300 mAh gMINUS SIGN 1 at 10 A gMINUS SIGN 1) and a prolonged fast-charging lifespan (862.82 mAh gMINUS SIGN 1 at 5 A gMINUS SIGN 1 after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs. (C) 2024 The Author(s). Small published by Wiley-VCH GmbH.

  • Název v anglickém jazyce

    Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

  • Popis výsledku anglicky

    Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (ALMOST EQUAL TO300 mAh gMINUS SIGN 1 at 10 A gMINUS SIGN 1) and a prolonged fast-charging lifespan (862.82 mAh gMINUS SIGN 1 at 5 A gMINUS SIGN 1 after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs. (C) 2024 The Author(s). Small published by Wiley-VCH GmbH.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21000 - Nano-technology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Small

  • ISSN

    1613-6810

  • e-ISSN

    1613-6829

  • Svazek periodika

    2406309

  • Číslo periodika v rámci svazku

    September 2024

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001326958200001

  • EID výsledku v databázi Scopus

    2-s2.0-85205341257