Fault Detection for Covered Conductors With High-Frequency Voltage Signals: From Local Patterns to Global Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F20%3A10245525" target="_blank" >RIV/61989100:27730/20:10245525 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9233447" target="_blank" >https://ieeexplore.ieee.org/document/9233447</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSG.2020.3032527" target="_blank" >10.1109/TSG.2020.3032527</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fault Detection for Covered Conductors With High-Frequency Voltage Signals: From Local Patterns to Global Features
Popis výsledku v původním jazyce
The detection and characterization of partial discharge (PD) are crucial for the insulation diagnosis of overhead lines with covered conductors. With the release of a large dataset containing thousands of naturally obtained high-frequency voltage signals, data-driven analysis of fault-related PD patterns on an unprecedented scale becomes viable. The high diversity of PD patterns and background noise interferences motivates us to design an innovative pulse shape characterization method based on clustering techniques, which can dynamically identify a set of representative PD-related pulses. Capitalizing on those pulses as referential patterns, we construct insightful features and develop a novel machine learning model with a superior detection performance for early-stage covered conductor faults. The presented model outperforms the winning model in a Kaggle competition and provides the state-of-the-art solution to detect real-time disturbances in the field.
Název v anglickém jazyce
Fault Detection for Covered Conductors With High-Frequency Voltage Signals: From Local Patterns to Global Features
Popis výsledku anglicky
The detection and characterization of partial discharge (PD) are crucial for the insulation diagnosis of overhead lines with covered conductors. With the release of a large dataset containing thousands of naturally obtained high-frequency voltage signals, data-driven analysis of fault-related PD patterns on an unprecedented scale becomes viable. The high diversity of PD patterns and background noise interferences motivates us to design an innovative pulse shape characterization method based on clustering techniques, which can dynamically identify a set of representative PD-related pulses. Capitalizing on those pulses as referential patterns, we construct insightful features and develop a novel machine learning model with a superior detection performance for early-stage covered conductor faults. The presented model outperforms the winning model in a Kaggle competition and provides the state-of-the-art solution to detect real-time disturbances in the field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F19.0389" target="_blank" >ED2.1.00/19.0389: Rozvoj výzkumné infrastruktury Centra ENET</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Smart Grid
ISSN
1949-3053
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1
Kód UT WoS článku
999
EID výsledku v databázi Scopus
2-s2.0-85101956783