An Intelligent Load Optimisation for Self-Powered Robotic Parking House in Inhabited Areas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F23%3A10253723" target="_blank" >RIV/61989100:27730/23:10253723 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/23:10253723
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10149287" target="_blank" >https://ieeexplore.ieee.org/document/10149287</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EPE58302.2023.10149287" target="_blank" >10.1109/EPE58302.2023.10149287</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Intelligent Load Optimisation for Self-Powered Robotic Parking House in Inhabited Areas
Popis výsledku v původním jazyce
This article discusses the results of a comprehensive study of an automatic parking house a modern approach to utilizing off-grid technologies with advanced load optimization to a Self-Powered Robotic Parking House (S-PRPH). S-PRPHs represent large technical solutions for parking in densely populated areas. The automatic parking building includes Automated Guide Vehicle (AGV) systems developed by the team of authors. AGV pallets are part of the parking building energy consumption. This solution solves urban parking needs, including energetic self- sufficiency, balancing between price and an optimal number of parking spaces, and the maximum use of the building surface for green areas that provide oxygen production, filtration of dust particles, and appropriate water management. Intelligent Load Optimisation (ILO) is a part of S-PRPH management and is based on the Non-dominated sorting genetic algorithm II. The article describes the results of an ILO based on multi-objective optimization and methods of demand-side management in three variants. The results of this study are due to a fundamentally positive impact on load optimization in the off-grid system's size of building with weather conditions of Central Europe.
Název v anglickém jazyce
An Intelligent Load Optimisation for Self-Powered Robotic Parking House in Inhabited Areas
Popis výsledku anglicky
This article discusses the results of a comprehensive study of an automatic parking house a modern approach to utilizing off-grid technologies with advanced load optimization to a Self-Powered Robotic Parking House (S-PRPH). S-PRPHs represent large technical solutions for parking in densely populated areas. The automatic parking building includes Automated Guide Vehicle (AGV) systems developed by the team of authors. AGV pallets are part of the parking building energy consumption. This solution solves urban parking needs, including energetic self- sufficiency, balancing between price and an optimal number of parking spaces, and the maximum use of the building surface for green areas that provide oxygen production, filtration of dust particles, and appropriate water management. Intelligent Load Optimisation (ILO) is a part of S-PRPH management and is based on the Non-dominated sorting genetic algorithm II. The article describes the results of an ILO based on multi-objective optimization and methods of demand-side management in three variants. The results of this study are due to a fundamentally positive impact on load optimization in the off-grid system's size of building with weather conditions of Central Europe.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proccedings of the 2023 23rd International Scientific Conference on Electric Power Engineering (EPE)
ISBN
979-8-3503-3594-1
ISSN
2376-5623
e-ISSN
2376-5631
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Brno
Datum konání akce
24. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—