A FUZZY-MINING APPROACH FOR SOLVING RULE BASED EXPERT SYSTEM UNWIELDINESS IN MEDICAL DOMAIN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86089191" target="_blank" >RIV/61989100:27740/13:86089191 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A FUZZY-MINING APPROACH FOR SOLVING RULE BASED EXPERT SYSTEM UNWIELDINESS IN MEDICAL DOMAIN
Popis výsledku v původním jazyce
Over the years, one of the challenges of a rule based expert system is the possibility of evolving a compact and consistent knowledge-base with a fewer numbers of rules that are relevant to the application domain, in order to enhance the comprehensibility of the expert system. In this paper, the hybrid of fuzzy rule mining interestingness measures and fuzzy expert system is exploited as a means of solving the problem of unwieldiness and maintenance complication in the rule based expert system. This negatively increases the knowledge-base space complexity and reduces rule access rate which impedes system response time. To validate this concept, the Coronary Heart Disease risk ratio determination is used as the case study. Results of fuzzy expert systemwith a fewer numbers of rules and fuzzy expert system with a large numbers of rules are presented for comparison. Moreover, the effect of fuzzy linguistic variable risk ratio is investigated. This makes the expert system recommendation cl
Název v anglickém jazyce
A FUZZY-MINING APPROACH FOR SOLVING RULE BASED EXPERT SYSTEM UNWIELDINESS IN MEDICAL DOMAIN
Popis výsledku anglicky
Over the years, one of the challenges of a rule based expert system is the possibility of evolving a compact and consistent knowledge-base with a fewer numbers of rules that are relevant to the application domain, in order to enhance the comprehensibility of the expert system. In this paper, the hybrid of fuzzy rule mining interestingness measures and fuzzy expert system is exploited as a means of solving the problem of unwieldiness and maintenance complication in the rule based expert system. This negatively increases the knowledge-base space complexity and reduces rule access rate which impedes system response time. To validate this concept, the Coronary Heart Disease risk ratio determination is used as the case study. Results of fuzzy expert systemwith a fewer numbers of rules and fuzzy expert system with a large numbers of rules are presented for comparison. Moreover, the effect of fuzzy linguistic variable risk ratio is investigated. This makes the expert system recommendation cl
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
435-450
Kód UT WoS článku
000328097600004
EID výsledku v databázi Scopus
—