Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86087620" target="_blank" >RIV/61989100:27740/14:86087620 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0129065714300071" target="_blank" >http://dx.doi.org/10.1142/S0129065714300071</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065714300071" target="_blank" >10.1142/S0129065714300071</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning
Popis výsledku v původním jazyce
Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues andpropose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide ran
Název v anglickém jazyce
Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning
Popis výsledku anglicky
Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues andpropose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide ran
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Příležitost pro mladé výzkumníky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—