Parallel solution of higher order differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F16%3A86098839" target="_blank" >RIV/61989100:27740/16:86098839 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/16:PU122416
Výsledek na webu
<a href="http://dx.doi.org/10.1109/HPCSim.2016.7568350" target="_blank" >http://dx.doi.org/10.1109/HPCSim.2016.7568350</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/HPCSim.2016.7568350" target="_blank" >10.1109/HPCSim.2016.7568350</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel solution of higher order differential equations
Popis výsledku v původním jazyce
The paper focuses on a mathematical approach which uses Modern Taylor Series Method (MTSM) for solving differential equations in a parallel way. Even though this method is not much preferred in the literature, some experimental calculations have shown and verified that the accuracy and stability of the MTSM exceeds the currently used algorithms for solving differential equations. Further, the MTSM has properties suitable for parallel processing, i.e. many independent calculations. The MTSM allows these calculations to be performed independently on several processors using basic mathematical operations. Hardware representation of these operations and their principle are discussed in this paper. Generally, the MTSM can only solve systems of ordinary differential equations (ODEs) that are formed as initial value problems (IVPs). Therefore, this paper also presents methods for solving higher order differential equations, PDEs and their transformations to the corresponding systems of ODEs (IVPs). Effectiveness of hardware implementation of the MTSM is also discussed in this paper, e.g. implementation on FPGA. In many cases, the MTSM obtains results faster than the commonly used Runge-Kutta methods. (C) 2016 IEEE.
Název v anglickém jazyce
Parallel solution of higher order differential equations
Popis výsledku anglicky
The paper focuses on a mathematical approach which uses Modern Taylor Series Method (MTSM) for solving differential equations in a parallel way. Even though this method is not much preferred in the literature, some experimental calculations have shown and verified that the accuracy and stability of the MTSM exceeds the currently used algorithms for solving differential equations. Further, the MTSM has properties suitable for parallel processing, i.e. many independent calculations. The MTSM allows these calculations to be performed independently on several processors using basic mathematical operations. Hardware representation of these operations and their principle are discussed in this paper. Generally, the MTSM can only solve systems of ordinary differential equations (ODEs) that are formed as initial value problems (IVPs). Therefore, this paper also presents methods for solving higher order differential equations, PDEs and their transformations to the corresponding systems of ODEs (IVPs). Effectiveness of hardware implementation of the MTSM is also discussed in this paper, e.g. implementation on FPGA. In many cases, the MTSM obtains results faster than the commonly used Runge-Kutta methods. (C) 2016 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS 2016)
ISBN
978-1-5090-2088-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
302-309
Název nakladatele
IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Místo vydání
345 E 47TH ST, NEW YORK, NY 10017 USA
Místo konání akce
Innsbruck
Datum konání akce
18. 7. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000389590600042