Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10237789" target="_blank" >RIV/61989100:27740/17:10237789 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.rsc.org/en/Content/ArticleLanding/2017/RA/C7RA11139H#!divAbstract" target="_blank" >http://pubs.rsc.org/en/Content/ArticleLanding/2017/RA/C7RA11139H#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7ra11139h" target="_blank" >10.1039/c7ra11139h</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force
Popis výsledku v původním jazyce
The stability of the stacked two-dimensional (2D) transition metal carbides and their interlayered friction in different configurations are comparatively studied by means of density functional theory (DFT). At equilibrium, a larger interlayer distance corresponds to a smaller binding energy, suggesting an easier sliding between them. The oxygen-functionalized M2CO2 possesses much lower sliding resistance than the bare ones due to the strong metallic interactions between the stacked M2C layers. Compared to the parallel stacking order of M2CO2-I, the mirror stacked M2CO2-II possesses better lubricant properties. At strained states, normal compression substantially enhances the sliding barrier owing to more charges transferring from the M to O atom. Furthermore, the in-plane biaxial strain may effectively hinder the interlayer sliding, while the uniaxial strain fundamentally modifies the preferred sliding pathway due to anisotropic expansion of surface electronic state. These results highlight that the functionalized MXenes with strain-controllable frictional properties are promising lubricating materials because of their low sliding energy barrier and excellent mechanical properties.
Název v anglickém jazyce
Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force
Popis výsledku anglicky
The stability of the stacked two-dimensional (2D) transition metal carbides and their interlayered friction in different configurations are comparatively studied by means of density functional theory (DFT). At equilibrium, a larger interlayer distance corresponds to a smaller binding energy, suggesting an easier sliding between them. The oxygen-functionalized M2CO2 possesses much lower sliding resistance than the bare ones due to the strong metallic interactions between the stacked M2C layers. Compared to the parallel stacking order of M2CO2-I, the mirror stacked M2CO2-II possesses better lubricant properties. At strained states, normal compression substantially enhances the sliding barrier owing to more charges transferring from the M to O atom. Furthermore, the in-plane biaxial strain may effectively hinder the interlayer sliding, while the uniaxial strain fundamentally modifies the preferred sliding pathway due to anisotropic expansion of surface electronic state. These results highlight that the functionalized MXenes with strain-controllable frictional properties are promising lubricating materials because of their low sliding energy barrier and excellent mechanical properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RSC Advances
ISSN
2046-2069
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
88
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
55912-55919
Kód UT WoS článku
000418372100046
EID výsledku v databázi Scopus
—