First-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10237796" target="_blank" >RIV/61989100:27740/17:10237796 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.224106" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.224106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.95.224106" target="_blank" >10.1103/PhysRevB.95.224106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloys
Popis výsledku v původním jazyce
Taking pure Mg, Mg-Al, and Mg-Zn as prototypes, the effects of strain on the stacking fault energies (SFEs), dislocation core structure, and Peierls stress were systematically investigated by means of density functional theory and the semidiscrete variational Peierls-Nabarro model. Our results suggest that volumetric strain may significantly influence the values of SFEs of both pure Mg and its alloys, which will eventually modify the dislocation core structure, Peierls stress, and preferred slip system, in agreement with recent experimental results. The so-called "strain factor" that was previously proposed for the solute strengthening could be justified as a major contribution to the strain effect on SFEs. Based on multivariate regression analysis, we proposed universal exponential relationships between the dislocation core structure, the Peierls stress, and the stable or unstable SFEs. Electronic structure calculations suggest that the variations of these critical parameters controlling strength and ductility under strain can be attributed to the strain-induced electronic polarization and redistribution of valence charge density at hollow sites. These findings provide a fundamental basis for tuning the strain effect to design novel Mg alloys with both high strength and ductility.
Název v anglickém jazyce
First-principles investigation of strain effects on the stacking fault energies, dislocation core structure, and Peierls stress of magnesium and its alloys
Popis výsledku anglicky
Taking pure Mg, Mg-Al, and Mg-Zn as prototypes, the effects of strain on the stacking fault energies (SFEs), dislocation core structure, and Peierls stress were systematically investigated by means of density functional theory and the semidiscrete variational Peierls-Nabarro model. Our results suggest that volumetric strain may significantly influence the values of SFEs of both pure Mg and its alloys, which will eventually modify the dislocation core structure, Peierls stress, and preferred slip system, in agreement with recent experimental results. The so-called "strain factor" that was previously proposed for the solute strengthening could be justified as a major contribution to the strain effect on SFEs. Based on multivariate regression analysis, we proposed universal exponential relationships between the dislocation core structure, the Peierls stress, and the stable or unstable SFEs. Electronic structure calculations suggest that the variations of these critical parameters controlling strength and ductility under strain can be attributed to the strain-induced electronic polarization and redistribution of valence charge density at hollow sites. These findings provide a fundamental basis for tuning the strain effect to design novel Mg alloys with both high strength and ductility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000404016500001
EID výsledku v databázi Scopus
—