Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10237797" target="_blank" >RIV/61989100:27740/17:10237797 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/wol1/doi/10.1002/aenm.201602528/full" target="_blank" >http://onlinelibrary.wiley.com/wol1/doi/10.1002/aenm.201602528/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.201602528" target="_blank" >10.1002/aenm.201602528</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes
Popis výsledku v původním jazyce
Rechargeable batteries based on lithium (sodium) metal anodes have been attracting increasing attention due to their high capacity and energy density, but the implementation of lithium (sodium) metal anode still faces many challenges, such as low Coulombic efficiency and dendrites growth. Layered materials have been used experimentally as protective films (PFs) to address these issues. In this work, the authors explore using first-principles computations the key factors that determine the properties and feasibility of various 2D layered PFs, including the defect pattern, crystalline structure, bond length, and metal proximity effect, and perform the simulations on both aspects of Li+ (Na+) ion diffusion property and mechanical stability. It is found that the introduction of defect, the increase in bond length, and the proximity effect by metal can accelerate the transfer of Li+ (Na+) ion and improve the ionic conductivity, but all of them make negative influences on the stiffness of materials against the suppression of dendrite growth and weaken both critical strains and critical stress. The results provide new insight into the interaction mechanism between Li+ (Na+) ions and PF materials at the atomic level and shed light onto exploring a variety of layered PF materials in metal anode battery systems.
Název v anglickém jazyce
Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes
Popis výsledku anglicky
Rechargeable batteries based on lithium (sodium) metal anodes have been attracting increasing attention due to their high capacity and energy density, but the implementation of lithium (sodium) metal anode still faces many challenges, such as low Coulombic efficiency and dendrites growth. Layered materials have been used experimentally as protective films (PFs) to address these issues. In this work, the authors explore using first-principles computations the key factors that determine the properties and feasibility of various 2D layered PFs, including the defect pattern, crystalline structure, bond length, and metal proximity effect, and perform the simulations on both aspects of Li+ (Na+) ion diffusion property and mechanical stability. It is found that the introduction of defect, the increase in bond length, and the proximity effect by metal can accelerate the transfer of Li+ (Na+) ion and improve the ionic conductivity, but all of them make negative influences on the stiffness of materials against the suppression of dendrite growth and weaken both critical strains and critical stress. The results provide new insight into the interaction mechanism between Li+ (Na+) ions and PF materials at the atomic level and shed light onto exploring a variety of layered PF materials in metal anode battery systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Energy Materials
ISSN
1614-6832
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000404751700010
EID výsledku v databázi Scopus
—