Markov chain model approach for traffic incident length prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10238089" target="_blank" >RIV/61989100:27740/17:10238089 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?doid=3157737.3157750" target="_blank" >https://dl.acm.org/citation.cfm?doid=3157737.3157750</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3157737.3157750" target="_blank" >10.1145/3157737.3157750</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Markov chain model approach for traffic incident length prediction
Popis výsledku v původním jazyce
One of the most challenging parts of traffic modeling is how to model traffic behavior during traffic incidents. One of the possible approaches to this problem is to use historical data to identify typical incidents and use this knowledge to classify future time series. This classification can be utilized for example in prediction of traffic incident duration. This procedure requires solutions to several problems. The first problem is how can historical time series of traffic incidents be clustered, and these clusters can be parametrized. The second problem is how can time series of new ongoing incidents be classified to these existing clusters and how this classification can be utilized in the prediction of their length. The main aim of this article is to propose a solution to these problems. Methods utilized in addressing these problems are called Markov chains, Dynamic Time Warping, Bayesian classification and Monte Carlo simulation. © 2017 Association for Computing Machinery.
Název v anglickém jazyce
Markov chain model approach for traffic incident length prediction
Popis výsledku anglicky
One of the most challenging parts of traffic modeling is how to model traffic behavior during traffic incidents. One of the possible approaches to this problem is to use historical data to identify typical incidents and use this knowledge to classify future time series. This classification can be utilized for example in prediction of traffic incident duration. This procedure requires solutions to several problems. The first problem is how can historical time series of traffic incidents be clustered, and these clusters can be parametrized. The second problem is how can time series of new ongoing incidents be classified to these existing clusters and how this classification can be utilized in the prediction of their length. The main aim of this article is to propose a solution to these problems. Methods utilized in addressing these problems are called Markov chains, Dynamic Time Warping, Bayesian classification and Monte Carlo simulation. © 2017 Association for Computing Machinery.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series 2017
ISBN
978-1-4503-5376-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
63-67
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Čcheng-tu
Datum konání akce
12. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—