Surface Electrochemical Stability and Strain-Tunable Lithium Storage of Highly Flexible 2D Transition Metal Carbides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10239999" target="_blank" >RIV/61989100:27740/18:10239999 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804867" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804867</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201804867" target="_blank" >10.1002/adfm.201804867</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surface Electrochemical Stability and Strain-Tunable Lithium Storage of Highly Flexible 2D Transition Metal Carbides
Popis výsledku v původním jazyce
2D transition metal carbides and/or nitrides (MXenes) have attracted enormous attention because of their potential applications in energy storage, catalysis, and others. The control of surface terminations is generally believed to offer the potential preparation approaches to novel MXenes, while an external strain may provide solution to property modification. However, an atomistic understanding on the stabilization of surface complexity and the influence of strain on electrochemical properties of MXenes are scarce yet much demanded. Herein, taking Ti2CTn as a representative MXene, the thermodynamically favorable configurations are explored with a mixture of functional groups under various electrochemical environments. It predicts that five thermodynamically preferable Ti2CTn terminated by O Symbol of the Klingon Empire and F Symbol of the Klingon Empire cofunctionalized groups are discovered, all of which show excellent mechanical flexibility and strength that appear a decreasing trend as increasing F/O ratio. Further investigations on strain-controllable Li-transport of these cofunctionalized Ti2CT2 indicate that a mixture of surface terminations decreases the diffusion barriers, while the uniaxial strain modifies the diffusion pathways of Li atom owing to asymmetrical surface geometry and electronic polarization. These findings provide a view on the modification of properties by controlling surface complexity, demonstrating effective pathways in designing MXenes by electrochemical approach and tuning electrochemical property by strains.
Název v anglickém jazyce
Surface Electrochemical Stability and Strain-Tunable Lithium Storage of Highly Flexible 2D Transition Metal Carbides
Popis výsledku anglicky
2D transition metal carbides and/or nitrides (MXenes) have attracted enormous attention because of their potential applications in energy storage, catalysis, and others. The control of surface terminations is generally believed to offer the potential preparation approaches to novel MXenes, while an external strain may provide solution to property modification. However, an atomistic understanding on the stabilization of surface complexity and the influence of strain on electrochemical properties of MXenes are scarce yet much demanded. Herein, taking Ti2CTn as a representative MXene, the thermodynamically favorable configurations are explored with a mixture of functional groups under various electrochemical environments. It predicts that five thermodynamically preferable Ti2CTn terminated by O Symbol of the Klingon Empire and F Symbol of the Klingon Empire cofunctionalized groups are discovered, all of which show excellent mechanical flexibility and strength that appear a decreasing trend as increasing F/O ratio. Further investigations on strain-controllable Li-transport of these cofunctionalized Ti2CT2 indicate that a mixture of surface terminations decreases the diffusion barriers, while the uniaxial strain modifies the diffusion pathways of Li atom owing to asymmetrical surface geometry and electronic polarization. These findings provide a view on the modification of properties by controlling surface complexity, demonstrating effective pathways in designing MXenes by electrochemical approach and tuning electrochemical property by strains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
44
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000450367700020
EID výsledku v databázi Scopus
—