Floreon+ modules: A real-world HARPA application in the high-end HPC system domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10243914" target="_blank" >RIV/61989100:27740/18:10243914 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-91962-1_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-91962-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-91962-1_12" target="_blank" >10.1007/978-3-319-91962-1_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Floreon+ modules: A real-world HARPA application in the high-end HPC system domain
Popis výsledku v původním jazyce
This chapter is centered around uncertainty computation with on-demand resource allocation for run-off prediction in a High-Performance Computer environment. Our research stands on a runtime operating system that automatically adapts resource allocation with the computation to provide precise outcomes before the time deadline. In our case, input data comes from several gauging stations, and when newly updated data arrives, models must be re-executed to provide accurate results immediately. Since the models run continuously (24/7), their computational demand is different during various hydrological events (e.g. periods with heavy rain and without any rain) and therefore computational resources have to be balanced according to the event severity. Although these kinds of models should run constantly, they are very computationally demanding during discrete periods of time, for example in the case of heavy rain. Then, the accuracy of the results must be as close as possible to reality. The work relies on the HARPA runtime resource manager that adapts resource allocation to the runtime-variable performance demand of applications. The resource assignment is temperature-aware: the application execution is dynamically migrated to the coolest cores, and this has a positive impact on the system reliability.
Název v anglickém jazyce
Floreon+ modules: A real-world HARPA application in the high-end HPC system domain
Popis výsledku anglicky
This chapter is centered around uncertainty computation with on-demand resource allocation for run-off prediction in a High-Performance Computer environment. Our research stands on a runtime operating system that automatically adapts resource allocation with the computation to provide precise outcomes before the time deadline. In our case, input data comes from several gauging stations, and when newly updated data arrives, models must be re-executed to provide accurate results immediately. Since the models run continuously (24/7), their computational demand is different during various hydrological events (e.g. periods with heavy rain and without any rain) and therefore computational resources have to be balanced according to the event severity. Although these kinds of models should run constantly, they are very computationally demanding during discrete periods of time, for example in the case of heavy rain. Then, the accuracy of the results must be as close as possible to reality. The work relies on the HARPA runtime resource manager that adapts resource allocation to the runtime-variable performance demand of applications. The resource assignment is temperature-aware: the application execution is dynamically migrated to the coolest cores, and this has a positive impact on the system reliability.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Harnessing Performance Variability in Embedded and High-performance Many/Multi-core Platforms: A Cross-layer Approach
ISBN
978-3-319-91961-4
Počet stran výsledku
29
Strana od-do
265-293
Počet stran knihy
325
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—