Designing ultrastrong 5d transition metal diborides with excellent stability for harsh service environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242316" target="_blank" >RIV/61989100:27740/19:10242316 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP02847A#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP02847A#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9cp02847a" target="_blank" >10.1039/c9cp02847a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Designing ultrastrong 5d transition metal diborides with excellent stability for harsh service environments
Popis výsledku v původním jazyce
Much effort was devoted towards the rational design of ultrastrong transition metal borides (TMBs) with remarkable mechanical properties and excellent stabilities, owing to promising applications in machining, drilling tools and protective coatings for the aerospace industry. Although an enormous number of investigations have been performed on these TMBs under normal conditions, studies on the stability and mechanical strength in harsh high-pressure environments, which are critical for safe service behavior and a realistic understanding of stabilities and strengthening mechanisms, are yet nearly absent. In this work, taking 5d TMB2 (TM = Hf, Ta, W, Re, Os, Ir and Pt) as an illustration, we performed comprehensive high-throughput first-principles screening for thermodynamically stable and metastable structures under various pressures. Four experimentally observed structures are found to be thermodynamically feasible for most 5d TMB2 (TM = Hf, Ta, W, Re, Os and Ir) at 0 and 100 GPa. By exploiting orbital-decomposed electronic structures, we reveal that the pressure-induced stabilization and phase transitions of 5d TMB2 can be rationalized by the splitting of bonding and antibonding states around the Fermi level. Further investigations on the pressure-induced strengthening indicate that 5d TMB2 in the hP6[194] structure exhibit a profound strengthening effect under high pressure, which can be rationalized by the proposed strengthening factor eta, but eta fails in the oP6[59] structure due to the changed instability modes at different pressures.
Název v anglickém jazyce
Designing ultrastrong 5d transition metal diborides with excellent stability for harsh service environments
Popis výsledku anglicky
Much effort was devoted towards the rational design of ultrastrong transition metal borides (TMBs) with remarkable mechanical properties and excellent stabilities, owing to promising applications in machining, drilling tools and protective coatings for the aerospace industry. Although an enormous number of investigations have been performed on these TMBs under normal conditions, studies on the stability and mechanical strength in harsh high-pressure environments, which are critical for safe service behavior and a realistic understanding of stabilities and strengthening mechanisms, are yet nearly absent. In this work, taking 5d TMB2 (TM = Hf, Ta, W, Re, Os, Ir and Pt) as an illustration, we performed comprehensive high-throughput first-principles screening for thermodynamically stable and metastable structures under various pressures. Four experimentally observed structures are found to be thermodynamically feasible for most 5d TMB2 (TM = Hf, Ta, W, Re, Os and Ir) at 0 and 100 GPa. By exploiting orbital-decomposed electronic structures, we reveal that the pressure-induced stabilization and phase transitions of 5d TMB2 can be rationalized by the splitting of bonding and antibonding states around the Fermi level. Further investigations on the pressure-induced strengthening indicate that 5d TMB2 in the hP6[194] structure exhibit a profound strengthening effect under high pressure, which can be rationalized by the proposed strengthening factor eta, but eta fails in the oP6[59] structure due to the changed instability modes at different pressures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
16095-16107
Kód UT WoS článku
000477705800013
EID výsledku v databázi Scopus
—