PNADIS: An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242317" target="_blank" >RIV/61989100:27740/19:10242317 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010465519300839?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010465519300839?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2019.03.005" target="_blank" >10.1016/j.cpc.2019.03.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PNADIS: An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance
Popis výsledku v původním jazyce
Dislocation is one of the most critical and fundamental crystal defects that dominate the mechanical behavior of crystalline solids, however, a quantitative determination of its character and property in experiments is quite challenging and limited so far. In this paper, a fully automated Peierls-Nabarro (P-N) analyzer named PNADIS is presented; a complete set of the character and property of dislocation can be automatically derived, including the dislocation core structure. Peierls energy and stress, pressure field around dislocation core, solute/dislocation interaction energy, as well as the energy barrier and increase in critical-resolved shear stress at 0 K for solid solution strengthening. Furthermore, both one-dimensional (1D) and two-dimensional (2D) P-N models are implemented to meet the demand to analyze the character and property of dislocation for not only simple FCC and HCP structures but also complex crystals. The implementation of this code has been critically validated by a lot of evaluations and tests including 1D P-N model for complex crystals, 2D P-N model for FCC and HCP metals, pressure field around dislocation core, and solid solution strengthening for alloys. We expect that the automated feature of this code would provide a high-efficiency solution for determining the character and property of dislocation. Program summary Program title: PNADIS Program Files doi: http://dx.doi.org/10.17632/whk6wdy3nn.1 Licensing provisions: GNU General Public License 3 Programming language: MATLAB Nature of problem: To determine automatically the character and property of dislocation, including dislocation core structure, Peierls stress, pressure field around dislocation core and solid solution strengthening, for not only FCC and HCP structures but also complex crystals. Solution method: The generalized stacking fault energy is firstly fitted by Fourier expansion, and meanwhile an appropriate trial function of disregistry vector is chosen. Afterwards, a least square minimization of the difference between elastic resistance and restoring force for one-dimensional Peierls-Nabarro model, or a global minimization of the total dislocation energy via particle swarm optimization or genetic algorithm for two-dimensional Peierls-Nabarro model, will be performed to determine the dislocation core structure of complex crystals, or FCC and HCP structures. Finally, the Peierls stress, pressure field around dislocation core and solid solute strengthening are derived from the calculated dislocation core structure. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
PNADIS: An automated Peierls-Nabarro analyzer for dislocation core structure and slip resistance
Popis výsledku anglicky
Dislocation is one of the most critical and fundamental crystal defects that dominate the mechanical behavior of crystalline solids, however, a quantitative determination of its character and property in experiments is quite challenging and limited so far. In this paper, a fully automated Peierls-Nabarro (P-N) analyzer named PNADIS is presented; a complete set of the character and property of dislocation can be automatically derived, including the dislocation core structure. Peierls energy and stress, pressure field around dislocation core, solute/dislocation interaction energy, as well as the energy barrier and increase in critical-resolved shear stress at 0 K for solid solution strengthening. Furthermore, both one-dimensional (1D) and two-dimensional (2D) P-N models are implemented to meet the demand to analyze the character and property of dislocation for not only simple FCC and HCP structures but also complex crystals. The implementation of this code has been critically validated by a lot of evaluations and tests including 1D P-N model for complex crystals, 2D P-N model for FCC and HCP metals, pressure field around dislocation core, and solid solution strengthening for alloys. We expect that the automated feature of this code would provide a high-efficiency solution for determining the character and property of dislocation. Program summary Program title: PNADIS Program Files doi: http://dx.doi.org/10.17632/whk6wdy3nn.1 Licensing provisions: GNU General Public License 3 Programming language: MATLAB Nature of problem: To determine automatically the character and property of dislocation, including dislocation core structure, Peierls stress, pressure field around dislocation core and solid solution strengthening, for not only FCC and HCP structures but also complex crystals. Solution method: The generalized stacking fault energy is firstly fitted by Fourier expansion, and meanwhile an appropriate trial function of disregistry vector is chosen. Afterwards, a least square minimization of the difference between elastic resistance and restoring force for one-dimensional Peierls-Nabarro model, or a global minimization of the total dislocation energy via particle swarm optimization or genetic algorithm for two-dimensional Peierls-Nabarro model, will be performed to determine the dislocation core structure of complex crystals, or FCC and HCP structures. Finally, the Peierls stress, pressure field around dislocation core and solid solute strengthening are derived from the calculated dislocation core structure. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Physics Communications
ISSN
0010-4655
e-ISSN
—
Svazek periodika
240
Číslo periodika v rámci svazku
240
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
60-73
Kód UT WoS článku
000474312900007
EID výsledku v databázi Scopus
—