Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

S-Doped Graphene-Regional Nucleation Mechanism for Dendrite-Free Lithium Metal Anodes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242318" target="_blank" >RIV/61989100:27740/19:10242318 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201804000" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201804000</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/aenm.201804000" target="_blank" >10.1002/aenm.201804000</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    S-Doped Graphene-Regional Nucleation Mechanism for Dendrite-Free Lithium Metal Anodes

  • Popis výsledku v původním jazyce

    Lithium metal is the most promising anode material for next-generation batteries, owing to its high theoretical specific capacity and low electrochemical potential. However, the practical application of lithium metal batteries (LMBs) has been plagued by the issues of uncontrollable lithium deposition. The multifunctional nanostructured anode can modulate the initial nucleation process of lithium before the extension of dendrites. By combing the theoretical design and experimental validation, a novel nucleation strategy is developed by introducing sulfur (S) to graphene. Through first-principles simulations, it is found that S atom doping can improve the Li adsorption ability on a large area around the S doping positions. Consequently, S-doped graphene with five lithiophilic sites rather than a single atomic site can serve as the pristine nucleation area, reducing the uneven Li deposition and improving the electrochemical performance. Modifying Li metal anodes by S-doped graphene enables an ultralow overpotential of 5.5 mV, a high average Coulombic efficiency of 99% over more than 180 cycles at a current density of 0.5 mA cm MINUS SIGN 2 for 1.0 mAh cm MINUS SIGN 2 , and a high areal capacity of 3 mAh cm MINUS SIGN 2 . This work sheds new light on the rational design of nucleation area materials for dendrite-free LMB. (C) 2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim

  • Název v anglickém jazyce

    S-Doped Graphene-Regional Nucleation Mechanism for Dendrite-Free Lithium Metal Anodes

  • Popis výsledku anglicky

    Lithium metal is the most promising anode material for next-generation batteries, owing to its high theoretical specific capacity and low electrochemical potential. However, the practical application of lithium metal batteries (LMBs) has been plagued by the issues of uncontrollable lithium deposition. The multifunctional nanostructured anode can modulate the initial nucleation process of lithium before the extension of dendrites. By combing the theoretical design and experimental validation, a novel nucleation strategy is developed by introducing sulfur (S) to graphene. Through first-principles simulations, it is found that S atom doping can improve the Li adsorption ability on a large area around the S doping positions. Consequently, S-doped graphene with five lithiophilic sites rather than a single atomic site can serve as the pristine nucleation area, reducing the uneven Li deposition and improving the electrochemical performance. Modifying Li metal anodes by S-doped graphene enables an ultralow overpotential of 5.5 mV, a high average Coulombic efficiency of 99% over more than 180 cycles at a current density of 0.5 mA cm MINUS SIGN 2 for 1.0 mAh cm MINUS SIGN 2 , and a high areal capacity of 3 mAh cm MINUS SIGN 2 . This work sheds new light on the rational design of nucleation area materials for dendrite-free LMB. (C) 2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů