Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition-Metal Carbides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242872" target="_blank" >RIV/61989100:27740/19:10242872 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05962#" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05962#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.9b05962" target="_blank" >10.1021/acs.jpcc.9b05962</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition-Metal Carbides
Popis výsledku v původním jazyce
Quantum spin Hall (QSH) insulators have attracted much attention due to their potential applications ranging from electronic devices to quantum computing. In general, a large band gap is regarded as a critical descriptor in the design of QSH insulators; however, it faces challenges when additional factors such as strain and surface oxidation are involved in practical applications. In this work, taking M '' M-2'C2O2 (M' = Ti, Zr, Hf; M '' = Mo, W) as a representative, results reveal that 2D ordered transition-metal carbides (MXenes) are promising candidates for flexible spintronic devices, which is ascribed to the mechanical flexibility and robust QSH states under strain. Although a large bulk band gap is shown in M '' 2HfC2O2, a strain-induced topological phase transition may limit its flexible application. On the contrary, M '' 2TiC2O2 has a smaller,gap, and its topological nontrivial state survives under strain. When n changes from 0 to 4 in M '' 2TinCn+1O2, a topologically nontrivial-trivial phase transition is observed in W2HfnCn+1O2, whereas a topologically nontrivial state remains in Mo2TinCn+1O2. After further screening a variety of promising coatings, it is found that fluorographene may effectively preserve the topologically nontrivial nature of M '' M-2'C2O2 with surface oxidation resistance, even under strain, providing a feasible application of M '' M-2'C2O2 as flexible QSH insulators.
Název v anglickém jazyce
Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition-Metal Carbides
Popis výsledku anglicky
Quantum spin Hall (QSH) insulators have attracted much attention due to their potential applications ranging from electronic devices to quantum computing. In general, a large band gap is regarded as a critical descriptor in the design of QSH insulators; however, it faces challenges when additional factors such as strain and surface oxidation are involved in practical applications. In this work, taking M '' M-2'C2O2 (M' = Ti, Zr, Hf; M '' = Mo, W) as a representative, results reveal that 2D ordered transition-metal carbides (MXenes) are promising candidates for flexible spintronic devices, which is ascribed to the mechanical flexibility and robust QSH states under strain. Although a large bulk band gap is shown in M '' 2HfC2O2, a strain-induced topological phase transition may limit its flexible application. On the contrary, M '' 2TiC2O2 has a smaller,gap, and its topological nontrivial state survives under strain. When n changes from 0 to 4 in M '' 2TinCn+1O2, a topologically nontrivial-trivial phase transition is observed in W2HfnCn+1O2, whereas a topologically nontrivial state remains in Mo2TinCn+1O2. After further screening a variety of promising coatings, it is found that fluorographene may effectively preserve the topologically nontrivial nature of M '' M-2'C2O2 with surface oxidation resistance, even under strain, providing a feasible application of M '' M-2'C2O2 as flexible QSH insulators.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
20664-20674
Kód UT WoS článku
000482545700064
EID výsledku v databázi Scopus
—