Tunable magnetic order in transition metal doped, layered, and anisotropic Bi2O2Se: Competition between exchange interaction mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242873" target="_blank" >RIV/61989100:27740/19:10242873 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.054438" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.054438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.100.054438" target="_blank" >10.1103/PhysRevB.100.054438</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tunable magnetic order in transition metal doped, layered, and anisotropic Bi2O2Se: Competition between exchange interaction mechanisms
Popis výsledku v původním jazyce
Bi2O2Se is a novel layer-structured material with high electron mobility, while its efficiency could be greatly improved by doping different elements to introduce a magnetic spin order. We investigated the electronic and magnetic properties of various transition metal (TM) (TM = Mn, Cr, Fe, Co, and Ni) doped Bi2O2Se within a framework of density functional theory (DFT), and discovered that Bi2-nXnO2Se exhibits long-range magnetic ordered structure via competition among double-exchange, p-d exchange, and superexchange interaction. The magnetic order of the bulk phase in which the magnetic atoms form interlayer coupling would vary with the type and concentration of doped atoms, but all the layered phases in which the magnetic atoms are in-plane coupled show ferromagnetic order. By combing DFT calculations with the Monte Carlo scheme, we solve the exchange interaction constants for the Heisenberg model and further evaluate the Curie temperatures of Bi2-nXnO2Se. Ferromagnetic order for most doped systems exhibit to be robust with high Curie temperature, some of which overcomes room temperature (for 12.5% Co-doped layer Bi2O2Se). It is also worth mentioning that the appearance of impurity energy levels narrows the band gap and enhances the spin-orbit coupling of d orbitals and therefore increase large magnetic anisotropy energy. Our study demonstrates a potential pathway to design new dilute magnetic semiconductors through doping of Bi2-nXnO2Se by magnetic transitional elements.
Název v anglickém jazyce
Tunable magnetic order in transition metal doped, layered, and anisotropic Bi2O2Se: Competition between exchange interaction mechanisms
Popis výsledku anglicky
Bi2O2Se is a novel layer-structured material with high electron mobility, while its efficiency could be greatly improved by doping different elements to introduce a magnetic spin order. We investigated the electronic and magnetic properties of various transition metal (TM) (TM = Mn, Cr, Fe, Co, and Ni) doped Bi2O2Se within a framework of density functional theory (DFT), and discovered that Bi2-nXnO2Se exhibits long-range magnetic ordered structure via competition among double-exchange, p-d exchange, and superexchange interaction. The magnetic order of the bulk phase in which the magnetic atoms form interlayer coupling would vary with the type and concentration of doped atoms, but all the layered phases in which the magnetic atoms are in-plane coupled show ferromagnetic order. By combing DFT calculations with the Monte Carlo scheme, we solve the exchange interaction constants for the Heisenberg model and further evaluate the Curie temperatures of Bi2-nXnO2Se. Ferromagnetic order for most doped systems exhibit to be robust with high Curie temperature, some of which overcomes room temperature (for 12.5% Co-doped layer Bi2O2Se). It is also worth mentioning that the appearance of impurity energy levels narrows the band gap and enhances the spin-orbit coupling of d orbitals and therefore increase large magnetic anisotropy energy. Our study demonstrates a potential pathway to design new dilute magnetic semiconductors through doping of Bi2-nXnO2Se by magnetic transitional elements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
100
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000482580300006
EID výsledku v databázi Scopus
—