Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10244887" target="_blank" >RIV/61989100:27740/20:10244887 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/math8010026" target="_blank" >https://doi.org/10.3390/math8010026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8010026" target="_blank" >10.3390/math8010026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation
Popis výsledku v původním jazyce
The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.
Název v anglickém jazyce
Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation
Popis výsledku anglicky
The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000515730100105
EID výsledku v databázi Scopus
2-s2.0-85079618293