Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10244887" target="_blank" >RIV/61989100:27740/20:10244887 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math8010026" target="_blank" >https://doi.org/10.3390/math8010026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8010026" target="_blank" >10.3390/math8010026</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation

  • Popis výsledku v původním jazyce

    The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.

  • Název v anglickém jazyce

    Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation

  • Popis výsledku anglicky

    The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000515730100105

  • EID výsledku v databázi Scopus

    2-s2.0-85079618293