2D-layered Sn/Ge anodes for lithium -ion batteries with high capacity and ultra -fast Li ion diffusivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10245153" target="_blank" >RIV/61989100:27740/20:10245153 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2095495619309179?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2095495619309179?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jechem.2019.11.025" target="_blank" >10.1016/j.jechem.2019.11.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
2D-layered Sn/Ge anodes for lithium -ion batteries with high capacity and ultra -fast Li ion diffusivity
Popis výsledku v původním jazyce
In summary, we investigated the suitability of stanene/germanene as anode material for LIB. A series of 2D- layered Li-Sn/Ge intermetallic compounds were predicted by genetic structure evaluation algorithms and the charge-discharge process were studied based on these phases. And it is also found that 2D-layered stanene and germanene own higher lithium capacity than 3D tin and germanium. By further simulating Li ions transferred regularity and diffusion rate, the excellent Li ions diffusion property expressed that the ultra-fast Li diffusivity could be achieved, especially for 2D Li-Sn system. The diffu- sion barriers were found to be related to crystal, rhombohedral phases show harder Li ions diffusion with higher energy barriers than orthorhombic and monoclinic crystal systems. As anode materials, 2D stanene and germanene provide the better com- prehensive performance obviously than bulk tin and germanium. For stanene anode, the highest content of Li reaches to 0.857 in charge-discharge process (germanene anode reaches to 0.833), both layered tin and germanium show higher lithium capacity than bulk. and the fast diffusion pathway could reduce energy barrier to ~ 0.03 eV. In total, it is suitable for stanene/germanene as anodes of LIB with the outstanding properties, especially stanene. Our results not only reveal the phase transition regularity of stanene/germanene as anode of LIB during charge-discharge process, but also offer a theory foundation for the application of new 2D-layered materials in LIB.
Název v anglickém jazyce
2D-layered Sn/Ge anodes for lithium -ion batteries with high capacity and ultra -fast Li ion diffusivity
Popis výsledku anglicky
In summary, we investigated the suitability of stanene/germanene as anode material for LIB. A series of 2D- layered Li-Sn/Ge intermetallic compounds were predicted by genetic structure evaluation algorithms and the charge-discharge process were studied based on these phases. And it is also found that 2D-layered stanene and germanene own higher lithium capacity than 3D tin and germanium. By further simulating Li ions transferred regularity and diffusion rate, the excellent Li ions diffusion property expressed that the ultra-fast Li diffusivity could be achieved, especially for 2D Li-Sn system. The diffu- sion barriers were found to be related to crystal, rhombohedral phases show harder Li ions diffusion with higher energy barriers than orthorhombic and monoclinic crystal systems. As anode materials, 2D stanene and germanene provide the better com- prehensive performance obviously than bulk tin and germanium. For stanene anode, the highest content of Li reaches to 0.857 in charge-discharge process (germanene anode reaches to 0.833), both layered tin and germanium show higher lithium capacity than bulk. and the fast diffusion pathway could reduce energy barrier to ~ 0.03 eV. In total, it is suitable for stanene/germanene as anodes of LIB with the outstanding properties, especially stanene. Our results not only reveal the phase transition regularity of stanene/germanene as anode of LIB during charge-discharge process, but also offer a theory foundation for the application of new 2D-layered materials in LIB.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Chemistry
ISSN
2095-4956
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
160-165
Kód UT WoS článku
000540735400007
EID výsledku v databázi Scopus
2-s2.0-85076915101