Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

HPC, Cloud and Big-Data Convergent Architectures: The LEXIS Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10245329" target="_blank" >RIV/61989100:27740/20:10245329 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-22354-0_19" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-22354-0_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-22354-0_19" target="_blank" >10.1007/978-3-030-22354-0_19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    HPC, Cloud and Big-Data Convergent Architectures: The LEXIS Approach

  • Popis výsledku v původním jazyce

    High Performance Computing (HPC) infrastructures (also referred to as supercomputing infrastructures) are at the basis of modern scientific discoveries, and allow engineers to greatly optimize their designs. The large amount of data (Big-Data) to be treated during simulations is pushing HPC managers to introduce more heterogeneity in their architectures, ranging from different processor families to specialized hardware devices (e.g., GPU computing, many-cores, FPGAs). Furthermore, there is also a growing demand for providing access to supercomputing resources as in common public Clouds. All these three elements (i.e., HPC resources, Big-Data, Cloud) make &quot;converged&quot; approaches mandatory to address challenges emerging in scientific and technical domains. The LEXIS project aims to design and set up an innovative computing architecture, where HPC, Cloud and Big-Data solutions are closely integrated to respond to the demands of performance, flexibility and scalability. To this end, the LEXIS architecture leverages on three main distinctive elements: (i) resources of supercomputing centers (geographically located in Europe) which are seamlessly managed in a federated fashion; (ii) an integrated data storage subsystem, which supports Big-Data ingestion and processing; and (iii) a web portal to enable users to easily get access to computing resources and manage their workloads. In addition, the LEXIS architecture will make use of innovative hardware solutions, such as burst buffers and FPGA accelerators, as well as a flexible orchestration software. To demonstrate the capabilities of the devised converged architecture, LEXIS will assess its performance, scalability and flexibility in different contexts. To this end, three computational highly demanding pilot test-beds have been selected as representative of application domains that will take advantage of the advanced LEXIS architecture: (i) Aeronautics - Computational Fluid Dynamics simulations of complex turbo-machinery and gearbox systems; (ii) Earthquake and Tsunami - acceleration of tsunami simulations to enable highly-accurate real-time analysis; and (iii) Weather and Climate - enabling complex workflows which combine various numerical forecasting models, from global &amp; regional weather forecasts to specific socio-economic impact models affecting emergency management (fire &amp; flood), sustainable agriculture and energy production. (C) 2020, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    HPC, Cloud and Big-Data Convergent Architectures: The LEXIS Approach

  • Popis výsledku anglicky

    High Performance Computing (HPC) infrastructures (also referred to as supercomputing infrastructures) are at the basis of modern scientific discoveries, and allow engineers to greatly optimize their designs. The large amount of data (Big-Data) to be treated during simulations is pushing HPC managers to introduce more heterogeneity in their architectures, ranging from different processor families to specialized hardware devices (e.g., GPU computing, many-cores, FPGAs). Furthermore, there is also a growing demand for providing access to supercomputing resources as in common public Clouds. All these three elements (i.e., HPC resources, Big-Data, Cloud) make &quot;converged&quot; approaches mandatory to address challenges emerging in scientific and technical domains. The LEXIS project aims to design and set up an innovative computing architecture, where HPC, Cloud and Big-Data solutions are closely integrated to respond to the demands of performance, flexibility and scalability. To this end, the LEXIS architecture leverages on three main distinctive elements: (i) resources of supercomputing centers (geographically located in Europe) which are seamlessly managed in a federated fashion; (ii) an integrated data storage subsystem, which supports Big-Data ingestion and processing; and (iii) a web portal to enable users to easily get access to computing resources and manage their workloads. In addition, the LEXIS architecture will make use of innovative hardware solutions, such as burst buffers and FPGA accelerators, as well as a flexible orchestration software. To demonstrate the capabilities of the devised converged architecture, LEXIS will assess its performance, scalability and flexibility in different contexts. To this end, three computational highly demanding pilot test-beds have been selected as representative of application domains that will take advantage of the advanced LEXIS architecture: (i) Aeronautics - Computational Fluid Dynamics simulations of complex turbo-machinery and gearbox systems; (ii) Earthquake and Tsunami - acceleration of tsunami simulations to enable highly-accurate real-time analysis; and (iii) Weather and Climate - enabling complex workflows which combine various numerical forecasting models, from global &amp; regional weather forecasts to specific socio-economic impact models affecting emergency management (fire &amp; flood), sustainable agriculture and energy production. (C) 2020, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Systems and Computing. Volume 993

  • ISBN

    978-3-030-22353-3

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Počet stran výsledku

    13

  • Strana od-do

    200-212

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Sydney

  • Datum konání akce

    3. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku