An Efficient Monte Carlo-based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10242405" target="_blank" >RIV/61989100:27740/21:10242405 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8758945/" target="_blank" >https://ieeexplore.ieee.org/document/8758945/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TETC.2019.2919801" target="_blank" >10.1109/TETC.2019.2919801</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Efficient Monte Carlo-based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System
Popis výsledku v původním jazyce
Incorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for dynamically selecting the number of samples used for the Monte Carlo simulation to solve the Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The proposed method is used to determine in a proactive manner the number of simulations to be done to extract the travel-time estimation for each specific request while respecting an error threshold as output quality level. The methodology requires a reduced effort on the application development side. We adopted an aspect-oriented programming language (LARA) together with a flexible dynamic autotuning library (mARGOt) respectively to instrument the code and to take tuning decisions on the number of samples improving the execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large fraction of simulations (between 36% and 81%) with respect to a static approach while considering different traffic situations, paths and error requirements. The corresponding speedup is reflected at infrastructure-level in terms of a reduction of around 36% of the computing resources needed to support the whole navigation pipeline. OAPA
Název v anglickém jazyce
An Efficient Monte Carlo-based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System
Popis výsledku anglicky
Incorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for dynamically selecting the number of samples used for the Monte Carlo simulation to solve the Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The proposed method is used to determine in a proactive manner the number of simulations to be done to extract the travel-time estimation for each specific request while respecting an error threshold as output quality level. The methodology requires a reduced effort on the application development side. We adopted an aspect-oriented programming language (LARA) together with a flexible dynamic autotuning library (mARGOt) respectively to instrument the code and to take tuning decisions on the number of samples improving the execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large fraction of simulations (between 36% and 81%) with respect to a static approach while considering different traffic situations, paths and error requirements. The corresponding speedup is reflected at infrastructure-level in terms of a reduction of around 36% of the computing resources needed to support the whole navigation pipeline. OAPA
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Emerging Topics in Computing
ISSN
2168-6750
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1006-1019
Kód UT WoS článku
000658346300036
EID výsledku v databázi Scopus
2-s2.0-85069896045