A comprehensive social media data processing and analytics architecture by using big data platforms: a case study of twitter flood-risk messages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247634" target="_blank" >RIV/61989100:27740/21:10247634 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12145-021-00601-w" target="_blank" >https://link.springer.com/article/10.1007/s12145-021-00601-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12145-021-00601-w" target="_blank" >10.1007/s12145-021-00601-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comprehensive social media data processing and analytics architecture by using big data platforms: a case study of twitter flood-risk messages
Popis výsledku v původním jazyce
The main objective of the article is to propose an advanced architecture and workflow based on Apache Hadoop and Apache Spark big data platforms. The primary purpose of the presented architecture is collecting, storing, processing, and analysing intensive data from social media streams. This paper presents how the proposed architecture and data workflow can be applied to analyse Tweets with a specific flood topic. The secondary objective, trying to describe the flood alert situation by using only Tweet messages and exploring the informative potential of such data is demonstrated as well. The predictive machine learning approach based on Bayes Theorem was utilized to classify flood and no flood messages. For this study, approximately 100,000 Twitter messages were processed and analysed. Messages were related to the flooding domain and collected over a period of 5 days (14 May - 18 May 2018). Spark application was developed to run data processing commands automatically and to generate the appropriate output data. Results confirmed the advantages of many well-known features of Spark and Hadoop in social media data processing. It was noted that such technologies are prepared to deal with social media data streams, but there are still challenges that one has to take into account. Based on the flood tweet analysis, it was observed that Twitter messages with some considerations are informative enough to be used to estimate general flood alert situations in particular regions. Text analysis techniques proved that Twitter messages contain valuable flood-spatial information. (C) 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Název v anglickém jazyce
A comprehensive social media data processing and analytics architecture by using big data platforms: a case study of twitter flood-risk messages
Popis výsledku anglicky
The main objective of the article is to propose an advanced architecture and workflow based on Apache Hadoop and Apache Spark big data platforms. The primary purpose of the presented architecture is collecting, storing, processing, and analysing intensive data from social media streams. This paper presents how the proposed architecture and data workflow can be applied to analyse Tweets with a specific flood topic. The secondary objective, trying to describe the flood alert situation by using only Tweet messages and exploring the informative potential of such data is demonstrated as well. The predictive machine learning approach based on Bayes Theorem was utilized to classify flood and no flood messages. For this study, approximately 100,000 Twitter messages were processed and analysed. Messages were related to the flooding domain and collected over a period of 5 days (14 May - 18 May 2018). Spark application was developed to run data processing commands automatically and to generate the appropriate output data. Results confirmed the advantages of many well-known features of Spark and Hadoop in social media data processing. It was noted that such technologies are prepared to deal with social media data streams, but there are still challenges that one has to take into account. Based on the flood tweet analysis, it was observed that Twitter messages with some considerations are informative enough to be used to estimate general flood alert situations in particular regions. Text analysis techniques proved that Twitter messages contain valuable flood-spatial information. (C) 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth Science Informatics
ISSN
1865-0473
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
913-929
Kód UT WoS článku
000627653100001
EID výsledku v databázi Scopus
2-s2.0-85102495032