Molecular insights from theoretical calculations explain the differences in affinity and diffusion of airborne contaminants on surfaces of hBN and graphene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247665" target="_blank" >RIV/61989100:27740/21:10247665 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/21:73610306 RIV/61989592:15310/21:73610306
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0169433221014562?via%3Dihub#ak005" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433221014562?via%3Dihub#ak005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2021.150382" target="_blank" >10.1016/j.apsusc.2021.150382</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular insights from theoretical calculations explain the differences in affinity and diffusion of airborne contaminants on surfaces of hBN and graphene
Popis výsledku v původním jazyce
Exposed surfaces of two-dimensional (2D) materials are susceptible to the adsorption of various molecules including airborne contaminants, which can affect their performance in real applications. Hexagonal boron nitride (hBN) is structurally the closest relative to graphite and its single layer form to graphene. The adsorption of organic molecules to graphene was subject of extensive research, however, little is known about interaction of adsorbates to hBN surface. We studied the affinity of organic molecules to the surface of hBN by inverse gas chromatography. The adsorption enthalpies of polar molecules including acetonitrile, nitromethane, ethanol, and acetone exhibited strong coverage dependency up to 20 % of a monolayer. Density functional theory and molecular dynamics calculations were employed to understand and interpret experimentally measured adsorption enthalpies. The calculations revealed that the strong affinity of polar molecules at low coverage was due to adsorption on steps and edges of hBN. The calculated surface diffusion barriers of all molecules were rather low, i.e., below 0.5 kcal/mol (except for benzene and cyclohexane), and molecules adsorbed on the surface behaved like a 2D gas. The results demonstrated that coupling inverse gas chromatography with computer simulations can provide vital insights into the mechanism of adsorption at the molecular level. (C) 2021 Elsevier B.V.
Název v anglickém jazyce
Molecular insights from theoretical calculations explain the differences in affinity and diffusion of airborne contaminants on surfaces of hBN and graphene
Popis výsledku anglicky
Exposed surfaces of two-dimensional (2D) materials are susceptible to the adsorption of various molecules including airborne contaminants, which can affect their performance in real applications. Hexagonal boron nitride (hBN) is structurally the closest relative to graphite and its single layer form to graphene. The adsorption of organic molecules to graphene was subject of extensive research, however, little is known about interaction of adsorbates to hBN surface. We studied the affinity of organic molecules to the surface of hBN by inverse gas chromatography. The adsorption enthalpies of polar molecules including acetonitrile, nitromethane, ethanol, and acetone exhibited strong coverage dependency up to 20 % of a monolayer. Density functional theory and molecular dynamics calculations were employed to understand and interpret experimentally measured adsorption enthalpies. The calculations revealed that the strong affinity of polar molecules at low coverage was due to adsorption on steps and edges of hBN. The calculated surface diffusion barriers of all molecules were rather low, i.e., below 0.5 kcal/mol (except for benzene and cyclohexane), and molecules adsorbed on the surface behaved like a 2D gas. The results demonstrated that coupling inverse gas chromatography with computer simulations can provide vital insights into the mechanism of adsorption at the molecular level. (C) 2021 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000754" target="_blank" >EF16_019/0000754: Nanotechnologie pro budoucnost</a><br>
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
—
Svazek periodika
565
Číslo periodika v rámci svazku
1 November 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000681161800005
EID výsledku v databázi Scopus
2-s2.0-85109067333