Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10249799" target="_blank" >RIV/61989100:27740/21:10249799 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27640/21:10249799
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adma.202102595" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adma.202102595</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202102595" target="_blank" >10.1002/adma.202102595</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts
Popis výsledku v původním jazyce
Designing highly active and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts has attracted great interest toward metal-air batteries. Herein, an efficient solution to the search for MXene-based bifunctional catalysts is proposed by introducing non-noble metals such as Fe/Co/Ni at the surfaces. These results indicate that the ultrahigh activities in Ni1/Ni2- and Fe1/Ni2-modified MXene-based double-atom catalysts (DACs) for bifunctional ORR/OER are better than those of well-known unifunctional catalysts with low overpotentials, such as Pt(111) for the ORR and IrO2(110) for the OER. Strain can profoundly regulate the catalytic activities of MXene-based DACs, providing a novel pathway for tunable catalytic behavior in flexible MXenes. An electrochemical model, based on density functional theory and theoretical polarization curves, is proposed to reveal the underlying mechanisms, in agreement with experimental results. Electronic structure analyses indicate that the excellent catalytic activities in the MXene-based DACs are attributed to the electron-capturing capability and synergistic interactions between Fe/Co/Ni adsorbents and MXene substrate. These findings not only reveal promising candidates for MXene-based bifunctional ORR/OER catalysts but also provide new theoretical insights into rationally designing noble-metal-free bifunctional DACs.
Název v anglickém jazyce
Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts
Popis výsledku anglicky
Designing highly active and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts has attracted great interest toward metal-air batteries. Herein, an efficient solution to the search for MXene-based bifunctional catalysts is proposed by introducing non-noble metals such as Fe/Co/Ni at the surfaces. These results indicate that the ultrahigh activities in Ni1/Ni2- and Fe1/Ni2-modified MXene-based double-atom catalysts (DACs) for bifunctional ORR/OER are better than those of well-known unifunctional catalysts with low overpotentials, such as Pt(111) for the ORR and IrO2(110) for the OER. Strain can profoundly regulate the catalytic activities of MXene-based DACs, providing a novel pathway for tunable catalytic behavior in flexible MXenes. An electrochemical model, based on density functional theory and theoretical polarization curves, is proposed to reveal the underlying mechanisms, in agreement with experimental results. Electronic structure analyses indicate that the excellent catalytic activities in the MXene-based DACs are attributed to the electron-capturing capability and synergistic interactions between Fe/Co/Ni adsorbents and MXene substrate. These findings not only reveal promising candidates for MXene-based bifunctional ORR/OER catalysts but also provide new theoretical insights into rationally designing noble-metal-free bifunctional DACs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
33
Číslo periodika v rámci svazku
40
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
nestrankovano
Kód UT WoS článku
000680534500001
EID výsledku v databázi Scopus
2-s2.0-85111681845