Steady-State Analysis of Electrical Networks in Pandapower Software: Computational Performances of Newton-Raphson, Newton-Raphson with Iwamoto Multiplier, and Gauss-Seidel Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249570" target="_blank" >RIV/61989100:27740/22:10249570 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/22:10249570
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/14/4/2002" target="_blank" >https://www.mdpi.com/2071-1050/14/4/2002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su14042002" target="_blank" >10.3390/su14042002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Steady-State Analysis of Electrical Networks in Pandapower Software: Computational Performances of Newton-Raphson, Newton-Raphson with Iwamoto Multiplier, and Gauss-Seidel Methods
Popis výsledku v původním jazyce
At the core of every system for the efficient control of the network steady-state operation is the AC-power-flow problem solver. For local distribution networks to continue to operate effectively, it is necessary to use the most powerful and numerically stable AC-power-flow problem solvers within the software that controls the power flows in these networks. This communication presents the results of analyses of the computational performance and stability of three methods for solving the AC-power-flow problem. Specifically, this communication compares the robustness and speed of execution of the Gauss-Seidel (G-S), Newton-Raphson (N-R), and Newton-Raphson method with Iwamoto multipliers (N-R-I), which were tested in open-source pandapower software using a meshed electrical network model of various topologies. The test results show that the pandapower implementations of the N-R method and the N-R-I method are significantly more robust and faster than the G-S method, regardless of the network topology. In addition, a generalized Python interface between the pandapower and the SciPy package was implemented and tested, and results show that the hybrid Powell, Levenberg-Marquardt, and Krylov methods, a quasilinearization algorithm, and the continuous Newton method can sometimes achieve better results than the classical N-R method.
Název v anglickém jazyce
Steady-State Analysis of Electrical Networks in Pandapower Software: Computational Performances of Newton-Raphson, Newton-Raphson with Iwamoto Multiplier, and Gauss-Seidel Methods
Popis výsledku anglicky
At the core of every system for the efficient control of the network steady-state operation is the AC-power-flow problem solver. For local distribution networks to continue to operate effectively, it is necessary to use the most powerful and numerically stable AC-power-flow problem solvers within the software that controls the power flows in these networks. This communication presents the results of analyses of the computational performance and stability of three methods for solving the AC-power-flow problem. Specifically, this communication compares the robustness and speed of execution of the Gauss-Seidel (G-S), Newton-Raphson (N-R), and Newton-Raphson method with Iwamoto multipliers (N-R-I), which were tested in open-source pandapower software using a meshed electrical network model of various topologies. The test results show that the pandapower implementations of the N-R method and the N-R-I method are significantly more robust and faster than the G-S method, regardless of the network topology. In addition, a generalized Python interface between the pandapower and the SciPy package was implemented and tested, and results show that the hybrid Powell, Levenberg-Marquardt, and Krylov methods, a quasilinearization algorithm, and the continuous Newton method can sometimes achieve better results than the classical N-R method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
2071-1050
Svazek periodika
14
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
nestrankovano
Kód UT WoS článku
000764429100001
EID výsledku v databázi Scopus
2-s2.0-85124725961