Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249812" target="_blank" >RIV/61989100:27740/22:10249812 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.enconman.2021.115064" target="_blank" >https://doi.org/10.1016/j.enconman.2021.115064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enconman.2021.115064" target="_blank" >10.1016/j.enconman.2021.115064</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration

  • Popis výsledku v původním jazyce

    Although freshwater is necessary for the well-being of humankind, increasing population growth and limited resources lead to a serious crisis to supply freshwater. Since the Earth is surrounded by seawater, desalination based on electrical power is introduced as a promising technology to provide freshwater. It is well documented that the connection of remote areas that usually do not have access to freshwater into the electricity grid is not affordable and eco-friendly. Hence, the efforts to design and construct high reliability, cost-effective, and eco-friendly stand-alone hybrid renewable energy system in remote areas. In line with this, this paper describes a novel energy management system for the optimized operation of a stand-alone hybrid energy system based on photovoltaic panels, wind turbines, batteries, and diesel generator. For this purpose, a multi-objective optimization problem is formulated by combining three objective functions, i.e., minimum the total life cycle cost as well as environmental impacts on human health and ecosystems and the maximum system reliability that can conflict with each. To solve the multi-objective optimization problem, a division algorithm is proposed that is more flexible and faster compared with conventional algorithms such as genetic algorithm. In order to show the proposed framework, a real case study in Larak Island, Iran, with appropriate solar and wind is considered. The effectiveness of the applied approach compared with optimization results of genetic algorithm and the artificial bee swarm optimization algorithm that was previously used successfully to solve optimization problems related to desalination integrated with the renewable energy system. The optimization is performed based on different diesel fuel price amounts (0.2, 0.5, and 1 $/liter). It is seen that at fuel price set to 0.2 and 0.5 $/liter, the seawater reverses osmosis desalination/photovoltaic/diesel generator/battery is the most cost-effective energy system, and when fuel price is 1 $/liter, the seawater reverses osmosis desalination/photovoltaic/wind turbine/diesel generator/battery is the most cost-effective hybrid system. While at fuel price set to 0.2, 0.5, and 1 $/liter, the seawater reverse osmosis desalination /photovoltaic/wind turbine/diesel generator/battery is the most eco-friendly. Finally, the results of this study show proposed algorithm is faster and more accurate (100 iterations, 98.36% accuracy) than the genetic algorithm (1000 iterations, 83.03% accuracy) and the artificial bee swarm optimization (300 iterations, 95.49% accuracy).

  • Název v anglickém jazyce

    Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration

  • Popis výsledku anglicky

    Although freshwater is necessary for the well-being of humankind, increasing population growth and limited resources lead to a serious crisis to supply freshwater. Since the Earth is surrounded by seawater, desalination based on electrical power is introduced as a promising technology to provide freshwater. It is well documented that the connection of remote areas that usually do not have access to freshwater into the electricity grid is not affordable and eco-friendly. Hence, the efforts to design and construct high reliability, cost-effective, and eco-friendly stand-alone hybrid renewable energy system in remote areas. In line with this, this paper describes a novel energy management system for the optimized operation of a stand-alone hybrid energy system based on photovoltaic panels, wind turbines, batteries, and diesel generator. For this purpose, a multi-objective optimization problem is formulated by combining three objective functions, i.e., minimum the total life cycle cost as well as environmental impacts on human health and ecosystems and the maximum system reliability that can conflict with each. To solve the multi-objective optimization problem, a division algorithm is proposed that is more flexible and faster compared with conventional algorithms such as genetic algorithm. In order to show the proposed framework, a real case study in Larak Island, Iran, with appropriate solar and wind is considered. The effectiveness of the applied approach compared with optimization results of genetic algorithm and the artificial bee swarm optimization algorithm that was previously used successfully to solve optimization problems related to desalination integrated with the renewable energy system. The optimization is performed based on different diesel fuel price amounts (0.2, 0.5, and 1 $/liter). It is seen that at fuel price set to 0.2 and 0.5 $/liter, the seawater reverses osmosis desalination/photovoltaic/diesel generator/battery is the most cost-effective energy system, and when fuel price is 1 $/liter, the seawater reverses osmosis desalination/photovoltaic/wind turbine/diesel generator/battery is the most cost-effective hybrid system. While at fuel price set to 0.2, 0.5, and 1 $/liter, the seawater reverse osmosis desalination /photovoltaic/wind turbine/diesel generator/battery is the most eco-friendly. Finally, the results of this study show proposed algorithm is faster and more accurate (100 iterations, 98.36% accuracy) than the genetic algorithm (1000 iterations, 83.03% accuracy) and the artificial bee swarm optimization (300 iterations, 95.49% accuracy).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Conversion and Management

  • ISSN

    0196-8904

  • e-ISSN

    1879-2227

  • Svazek periodika

    252

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000744026300002

  • EID výsledku v databázi Scopus

    2-s2.0-85120494609