Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10250888" target="_blank" >RIV/61989100:27740/22:10250888 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10250888
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9996400?source=authoralert" target="_blank" >https://ieeexplore.ieee.org/document/9996400?source=authoralert</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3231384" target="_blank" >10.1109/ACCESS.2022.3231384</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms
Popis výsledku v původním jazyce
Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.
Název v anglickém jazyce
Efficient Detection of Spam over Internet Telephony by Machine Learning Algorithms
Popis výsledku anglicky
Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
133412-133426
Kód UT WoS článku
000906230200001
EID výsledku v databázi Scopus
—