Applications of AI for Predictive Maitenance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252584" target="_blank" >RIV/61989100:27740/23:10252584 - isvavai.cz</a>
Výsledek na webu
<a href="https://events.it4i.cz/event/158/" target="_blank" >https://events.it4i.cz/event/158/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of AI for Predictive Maitenance
Popis výsledku v původním jazyce
Using machine or deep learning to predict specific imminent events can be useful for many applications, like predicting the failure of a hard disk or unexpected downtime of a compute node. Such events can be considered anomalies that occur unexpectedly and rarely. Hence, it is a challenge to train machine and deep learning models for these due to lack of appropriate training data.This course covered three different methods, using XGBoost, Long Short-Term Memory (LSTM), and Autoencoders. For each, detailed hands-on exercises were provided to learn how to use these methods and how to select and pre-process training data for them.
Název v anglickém jazyce
Applications of AI for Predictive Maitenance
Popis výsledku anglicky
Using machine or deep learning to predict specific imminent events can be useful for many applications, like predicting the failure of a hard disk or unexpected downtime of a compute node. Such events can be considered anomalies that occur unexpectedly and rarely. Hence, it is a challenge to train machine and deep learning models for these due to lack of appropriate training data.This course covered three different methods, using XGBoost, Long Short-Term Memory (LSTM), and Autoencoders. For each, detailed hands-on exercises were provided to learn how to use these methods and how to select and pre-process training data for them.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/MC2301" target="_blank" >MC2301: National Competence Centres in the framework of EuroHPC Phase 2 - EUROCC 2</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů