Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254106" target="_blank" >RIV/61989100:27740/24:10254106 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsanm.3c05688" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.3c05688</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsanm.3c05688" target="_blank" >10.1021/acsanm.3c05688</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning

  • Popis výsledku v původním jazyce

    Optical sensing methods offer a convenient noncontact approach to monitor different environmental parameters with a high spatial resolution and fast response times. Temperature monitoring can benefit from optical sensing using luminescent nanoprobes, but many of those substances are toxic or expensive. Carbon dots are a class of luminescent colloidal nanoparticles that have recently gained recognition as optical probes, which are easy to produce by environmentally friendly synthesis, nontoxic, and stable. While carbon dots show temperature-dependent optical properties, their broad emission profiles may constitute a challenge for optical sensing. In this study, three types of carbon dots with different emission profiles were tested as optical probes for intensity-, spectral-shift-, intensity-ratio-, bandwidth-, and lifetime-based temperature sensing. Depending on the optical characteristics of the specific probe, either intensity- or lifetime-based sensing was shown to be the most accurate, with accuracies of up to 1.65 and 0.70 K, respectively. Employing Gaussian fits improved accuracies of the intensity-ratio-based sensing to 1.24 K, with the additional benefit of greater stability against excitation fluctuations. Finally, a multiple linear regression model combining steady-state and time-resolved luminescence data of carbon dots has been applied to further increase the sensing accuracies with carbon dots to 0.54 K. Our study demonstrates how multidimensional machine learning methods can greatly improve temperature sensing with optical probes. (C) 2024 American Chemical Society.

  • Název v anglickém jazyce

    Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning

  • Popis výsledku anglicky

    Optical sensing methods offer a convenient noncontact approach to monitor different environmental parameters with a high spatial resolution and fast response times. Temperature monitoring can benefit from optical sensing using luminescent nanoprobes, but many of those substances are toxic or expensive. Carbon dots are a class of luminescent colloidal nanoparticles that have recently gained recognition as optical probes, which are easy to produce by environmentally friendly synthesis, nontoxic, and stable. While carbon dots show temperature-dependent optical properties, their broad emission profiles may constitute a challenge for optical sensing. In this study, three types of carbon dots with different emission profiles were tested as optical probes for intensity-, spectral-shift-, intensity-ratio-, bandwidth-, and lifetime-based temperature sensing. Depending on the optical characteristics of the specific probe, either intensity- or lifetime-based sensing was shown to be the most accurate, with accuracies of up to 1.65 and 0.70 K, respectively. Employing Gaussian fits improved accuracies of the intensity-ratio-based sensing to 1.24 K, with the additional benefit of greater stability against excitation fluctuations. Finally, a multiple linear regression model combining steady-state and time-resolved luminescence data of carbon dots has been applied to further increase the sensing accuracies with carbon dots to 0.54 K. Our study demonstrates how multidimensional machine learning methods can greatly improve temperature sensing with optical probes. (C) 2024 American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21001 - Nano-materials (production and properties)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Applied Nano Materials

  • ISSN

    2574-0970

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2258-2269

  • Kód UT WoS článku

    001152654200001

  • EID výsledku v databázi Scopus

    2-s2.0-85182014288