Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254106" target="_blank" >RIV/61989100:27740/24:10254106 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.3c05688" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.3c05688</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.3c05688" target="_blank" >10.1021/acsanm.3c05688</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning
Popis výsledku v původním jazyce
Optical sensing methods offer a convenient noncontact approach to monitor different environmental parameters with a high spatial resolution and fast response times. Temperature monitoring can benefit from optical sensing using luminescent nanoprobes, but many of those substances are toxic or expensive. Carbon dots are a class of luminescent colloidal nanoparticles that have recently gained recognition as optical probes, which are easy to produce by environmentally friendly synthesis, nontoxic, and stable. While carbon dots show temperature-dependent optical properties, their broad emission profiles may constitute a challenge for optical sensing. In this study, three types of carbon dots with different emission profiles were tested as optical probes for intensity-, spectral-shift-, intensity-ratio-, bandwidth-, and lifetime-based temperature sensing. Depending on the optical characteristics of the specific probe, either intensity- or lifetime-based sensing was shown to be the most accurate, with accuracies of up to 1.65 and 0.70 K, respectively. Employing Gaussian fits improved accuracies of the intensity-ratio-based sensing to 1.24 K, with the additional benefit of greater stability against excitation fluctuations. Finally, a multiple linear regression model combining steady-state and time-resolved luminescence data of carbon dots has been applied to further increase the sensing accuracies with carbon dots to 0.54 K. Our study demonstrates how multidimensional machine learning methods can greatly improve temperature sensing with optical probes. (C) 2024 American Chemical Society.
Název v anglickém jazyce
Improving the Accuracy of Carbon Dot Temperature Sensing Using Multi-Dimensional Machine Learning
Popis výsledku anglicky
Optical sensing methods offer a convenient noncontact approach to monitor different environmental parameters with a high spatial resolution and fast response times. Temperature monitoring can benefit from optical sensing using luminescent nanoprobes, but many of those substances are toxic or expensive. Carbon dots are a class of luminescent colloidal nanoparticles that have recently gained recognition as optical probes, which are easy to produce by environmentally friendly synthesis, nontoxic, and stable. While carbon dots show temperature-dependent optical properties, their broad emission profiles may constitute a challenge for optical sensing. In this study, three types of carbon dots with different emission profiles were tested as optical probes for intensity-, spectral-shift-, intensity-ratio-, bandwidth-, and lifetime-based temperature sensing. Depending on the optical characteristics of the specific probe, either intensity- or lifetime-based sensing was shown to be the most accurate, with accuracies of up to 1.65 and 0.70 K, respectively. Employing Gaussian fits improved accuracies of the intensity-ratio-based sensing to 1.24 K, with the additional benefit of greater stability against excitation fluctuations. Finally, a multiple linear regression model combining steady-state and time-resolved luminescence data of carbon dots has been applied to further increase the sensing accuracies with carbon dots to 0.54 K. Our study demonstrates how multidimensional machine learning methods can greatly improve temperature sensing with optical probes. (C) 2024 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2258-2269
Kód UT WoS článku
001152654200001
EID výsledku v databázi Scopus
2-s2.0-85182014288