Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254125" target="_blank" >RIV/61989100:27740/24:10254125 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adma.202304557" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adma.202304557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202304557" target="_blank" >10.1002/adma.202304557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes
Popis výsledku v původním jazyce
Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI4 (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes. The active elemental iodine in the perovskite cathode provides capacity through a reversible I-/I+ redox pair conversion at full depth, and the rapid electron injection/extraction leads to excellent reaction kinetics. Consequently, high discharge plateaus (1.71 V vs Zn2+/Zn; 3.41 V vs Li+/Li), large capacity (421 mAh g-1I), and a low decay rate (1.74 mV mAh-1 g-1I) are achieved for lithium and zinc ion batteries, respectively. This study demonstrates the promising potential of perovskite materials for high-performance metal-iodine batteries. Their reactions based on the two-electron transfer mechanism shed light on similar battery systems aiming for decent operational stability and high energy density.The iodine-rich 2D perovskite materials work as an innovative iodine cathode for high-performance iodine-based batteries, which are well suited to diversified electrolytes and two-electron redox modes, delivering large capacity, high output voltage, and high energy density.image
Název v anglickém jazyce
Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes
Popis výsledku anglicky
Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI4 (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes. The active elemental iodine in the perovskite cathode provides capacity through a reversible I-/I+ redox pair conversion at full depth, and the rapid electron injection/extraction leads to excellent reaction kinetics. Consequently, high discharge plateaus (1.71 V vs Zn2+/Zn; 3.41 V vs Li+/Li), large capacity (421 mAh g-1I), and a low decay rate (1.74 mV mAh-1 g-1I) are achieved for lithium and zinc ion batteries, respectively. This study demonstrates the promising potential of perovskite materials for high-performance metal-iodine batteries. Their reactions based on the two-electron transfer mechanism shed light on similar battery systems aiming for decent operational stability and high energy density.The iodine-rich 2D perovskite materials work as an innovative iodine cathode for high-performance iodine-based batteries, which are well suited to diversified electrolytes and two-electron redox modes, delivering large capacity, high output voltage, and high energy density.image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
001112420700001
EID výsledku v databázi Scopus
2-s2.0-85178231373