Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254624" target="_blank" >RIV/61989100:27740/24:10254624 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/10407790.2024.2327474" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10407790.2024.2327474</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10407790.2024.2327474" target="_blank" >10.1080/10407790.2024.2327474</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach

  • Popis výsledku v původním jazyce

    Due to the vast applications of nanofluids in hybrid cooling processes and their role in improving heat transfer in thermal systems, an attempt has been made to investigate the consequence of temperature-dependent thermal conductivity in the bidirectional flowing of Prandtl-Eyring (PE) hybrid nanomaterial. Zirconium dioxide (ZrO2) and copper (Cu) nanoparticles have been dispersed into an engine oil (EO) to create an effective hybrid nanomaterial. Viscous dissipation, magnetization, linear thermal radiation, and Ohmic heating mechanisms also influence the dynamics of the hybrid nanomaterial. The governing equations have been parameterized by using similarity transformations and the thermophysical properties of nanoparticles. Keller-Box simulations for the modeled problem have been conducted using an in-house code developed in MATHEMATICA. Convergence analysis has been presented and robust validation of the results has been performed to certify the accuracy of the numerical inspection. Post-processing of the results has been carried out by plotting temperature and velocity curves. Drag coefficient and Nusselt number have been formulated and analyzed in tabular forms. The rate of heat transfer is developed with the hybridization of ZrO2 and Cu nanoparticles into the base liquid, while drag forces are enhanced when utilizing PE material as the base liquid.

  • Název v anglickém jazyce

    Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach

  • Popis výsledku anglicky

    Due to the vast applications of nanofluids in hybrid cooling processes and their role in improving heat transfer in thermal systems, an attempt has been made to investigate the consequence of temperature-dependent thermal conductivity in the bidirectional flowing of Prandtl-Eyring (PE) hybrid nanomaterial. Zirconium dioxide (ZrO2) and copper (Cu) nanoparticles have been dispersed into an engine oil (EO) to create an effective hybrid nanomaterial. Viscous dissipation, magnetization, linear thermal radiation, and Ohmic heating mechanisms also influence the dynamics of the hybrid nanomaterial. The governing equations have been parameterized by using similarity transformations and the thermophysical properties of nanoparticles. Keller-Box simulations for the modeled problem have been conducted using an in-house code developed in MATHEMATICA. Convergence analysis has been presented and robust validation of the results has been performed to certify the accuracy of the numerical inspection. Post-processing of the results has been carried out by plotting temperature and velocity curves. Drag coefficient and Nusselt number have been formulated and analyzed in tabular forms. The rate of heat transfer is developed with the hybridization of ZrO2 and Cu nanoparticles into the base liquid, while drag forces are enhanced when utilizing PE material as the base liquid.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS

  • ISSN

    1040-7790

  • e-ISSN

    1521-0626

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    WF - Wallis a Futuna

  • Počet stran výsledku

    28

  • Strana od-do

  • Kód UT WoS článku

    001185833200001

  • EID výsledku v databázi Scopus

    2-s2.0-85188468943