Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254624" target="_blank" >RIV/61989100:27740/24:10254624 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/10407790.2024.2327474" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10407790.2024.2327474</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10407790.2024.2327474" target="_blank" >10.1080/10407790.2024.2327474</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach
Popis výsledku v původním jazyce
Due to the vast applications of nanofluids in hybrid cooling processes and their role in improving heat transfer in thermal systems, an attempt has been made to investigate the consequence of temperature-dependent thermal conductivity in the bidirectional flowing of Prandtl-Eyring (PE) hybrid nanomaterial. Zirconium dioxide (ZrO2) and copper (Cu) nanoparticles have been dispersed into an engine oil (EO) to create an effective hybrid nanomaterial. Viscous dissipation, magnetization, linear thermal radiation, and Ohmic heating mechanisms also influence the dynamics of the hybrid nanomaterial. The governing equations have been parameterized by using similarity transformations and the thermophysical properties of nanoparticles. Keller-Box simulations for the modeled problem have been conducted using an in-house code developed in MATHEMATICA. Convergence analysis has been presented and robust validation of the results has been performed to certify the accuracy of the numerical inspection. Post-processing of the results has been carried out by plotting temperature and velocity curves. Drag coefficient and Nusselt number have been formulated and analyzed in tabular forms. The rate of heat transfer is developed with the hybridization of ZrO2 and Cu nanoparticles into the base liquid, while drag forces are enhanced when utilizing PE material as the base liquid.
Název v anglickém jazyce
Nanoparticles hybridization in bidirectional flowing of Prandtl-Eyring material with temperature-dependent conductivity: A numerical approach
Popis výsledku anglicky
Due to the vast applications of nanofluids in hybrid cooling processes and their role in improving heat transfer in thermal systems, an attempt has been made to investigate the consequence of temperature-dependent thermal conductivity in the bidirectional flowing of Prandtl-Eyring (PE) hybrid nanomaterial. Zirconium dioxide (ZrO2) and copper (Cu) nanoparticles have been dispersed into an engine oil (EO) to create an effective hybrid nanomaterial. Viscous dissipation, magnetization, linear thermal radiation, and Ohmic heating mechanisms also influence the dynamics of the hybrid nanomaterial. The governing equations have been parameterized by using similarity transformations and the thermophysical properties of nanoparticles. Keller-Box simulations for the modeled problem have been conducted using an in-house code developed in MATHEMATICA. Convergence analysis has been presented and robust validation of the results has been performed to certify the accuracy of the numerical inspection. Post-processing of the results has been carried out by plotting temperature and velocity curves. Drag coefficient and Nusselt number have been formulated and analyzed in tabular forms. The rate of heat transfer is developed with the hybridization of ZrO2 and Cu nanoparticles into the base liquid, while drag forces are enhanced when utilizing PE material as the base liquid.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS
ISSN
1040-7790
e-ISSN
1521-0626
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
WF - Wallis a Futuna
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
001185833200001
EID výsledku v databázi Scopus
2-s2.0-85188468943