A novel computational fractional modeling approach for the global dynamics and optimal control strategies in mitigating Marburg infection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254796" target="_blank" >RIV/61989100:27740/24:10254796 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimspress.com/article/doi/10.3934/math.2024642" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.2024642</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.2024642" target="_blank" >10.3934/math.2024642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel computational fractional modeling approach for the global dynamics and optimal control strategies in mitigating Marburg infection
Popis výsledku v původním jazyce
Marburg virus disease poses a significant risk to global health, impacting both humans and non-human primates. This study has yielded an optimal control model for potentially mitigating the transmission of the Marburg infection. The proposed mathematical model includes fractional-order derivatives in the Caputo sense. Initially, we analyzed the model without control measures, examining its key characteristics regarding local and global stabilities. Subsequently, we extended the model by incorporating suitable time-dependent optimal control variables. We have also introduced two timedependent control measures: psi 1 for the prevention of human-to-human Marburg transmission, and psi 2 to enhance the rate of quarantine of exposed individuals. We performed simulation analysis for both cases i.e., with and without optimal controls using the two-step Newton polynomial approximation study between classical and fractional cases validate the biological significance of the fractional operator and effectiveness of the proposed optimal control strategies.
Název v anglickém jazyce
A novel computational fractional modeling approach for the global dynamics and optimal control strategies in mitigating Marburg infection
Popis výsledku anglicky
Marburg virus disease poses a significant risk to global health, impacting both humans and non-human primates. This study has yielded an optimal control model for potentially mitigating the transmission of the Marburg infection. The proposed mathematical model includes fractional-order derivatives in the Caputo sense. Initially, we analyzed the model without control measures, examining its key characteristics regarding local and global stabilities. Subsequently, we extended the model by incorporating suitable time-dependent optimal control variables. We have also introduced two timedependent control measures: psi 1 for the prevention of human-to-human Marburg transmission, and psi 2 to enhance the rate of quarantine of exposed individuals. We performed simulation analysis for both cases i.e., with and without optimal controls using the two-step Newton polynomial approximation study between classical and fractional cases validate the biological significance of the fractional operator and effectiveness of the proposed optimal control strategies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS Mathematics
ISSN
2473-6988
e-ISSN
2473-6988
Svazek periodika
9
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
13159-13194
Kód UT WoS článku
001202042000001
EID výsledku v databázi Scopus
2-s2.0-85189986770