Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fractional dynamics and sensitivity analysis of measles epidemic model through vaccination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254904" target="_blank" >RIV/61989100:27740/24:10254904 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/25765299.2024.2345424" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/25765299.2024.2345424</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/25765299.2024.2345424" target="_blank" >10.1080/25765299.2024.2345424</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fractional dynamics and sensitivity analysis of measles epidemic model through vaccination

  • Popis výsledku v původním jazyce

    Measles is a highly contagious disease that mainly affects children worldwide. Even though a reliable and effective vaccination is available, there were 140,000 measles deaths worldwide in 2018, and most of them were children under the age five years. In this paper, we comprehensively investigate a novel fractional SVEIR (Susceptible-Vaccinated-Exposed-Infected-Recovered) model of the measles epidemic powered by nonlinear fractional differential equations to understand the epidemic&apos;s dynamical behaviour. We use a non-singular Atangana-Baleanu fractional derivative to analyze the proposed model, taking advantage of non-locality. The existence, uniqueness, positivity and boundedness of the solutions are shown via concepts of fixed point theory, and we also perform the Ulam-Hyers stability of the considered model. The parameter sensitivity is discussed in the context of the variance with each parameter using 3-D graphics based on the basic reproduction number. Moreover, with the Atangana-Toufik numerical scheme, numerical findings are depicted for different fractional-order values. The presented approach produce results that are efficiently consistent and in excellent agreement with the theoretical results. (C) 2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of the University of Bahrain.

  • Název v anglickém jazyce

    Fractional dynamics and sensitivity analysis of measles epidemic model through vaccination

  • Popis výsledku anglicky

    Measles is a highly contagious disease that mainly affects children worldwide. Even though a reliable and effective vaccination is available, there were 140,000 measles deaths worldwide in 2018, and most of them were children under the age five years. In this paper, we comprehensively investigate a novel fractional SVEIR (Susceptible-Vaccinated-Exposed-Infected-Recovered) model of the measles epidemic powered by nonlinear fractional differential equations to understand the epidemic&apos;s dynamical behaviour. We use a non-singular Atangana-Baleanu fractional derivative to analyze the proposed model, taking advantage of non-locality. The existence, uniqueness, positivity and boundedness of the solutions are shown via concepts of fixed point theory, and we also perform the Ulam-Hyers stability of the considered model. The parameter sensitivity is discussed in the context of the variance with each parameter using 3-D graphics based on the basic reproduction number. Moreover, with the Atangana-Toufik numerical scheme, numerical findings are depicted for different fractional-order values. The presented approach produce results that are efficiently consistent and in excellent agreement with the theoretical results. (C) 2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of the University of Bahrain.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Arab Journal of Basic and Applied Sciences

  • ISSN

    2576-5299

  • e-ISSN

    2576-5299

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    265-281

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85192233170