Computational analysis of microgravity and viscous dissipation impact on periodical heat transfer of MHD fluid along porous radiative surface with thermal slip effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255140" target="_blank" >RIV/61989100:27740/24:10255140 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2214157X24006725#ack0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214157X24006725#ack0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csite.2024.104641" target="_blank" >10.1016/j.csite.2024.104641</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational analysis of microgravity and viscous dissipation impact on periodical heat transfer of MHD fluid along porous radiative surface with thermal slip effects
Popis výsledku v původním jazyce
The current thermal slip and Magnetohydrodynamic analysis plays prominent importance in heat insulation materials, polishing of artificial heart valves, heat exchangers, magnetic resonance imaging and nanoburning processes. The main objective of the existing article is to deliberate the impact of thermal slip, thermal radiation and viscous dissipation on magnetized cone embedded in a porous medium under reduced gravitational pressure. Convective heating characteristics are used to increase the rate of heating throughout the porous cone. For viscous flow along a heated and magnetized cone, the conclusions are drawn. The simulated nonlinear partial differential equations are transformed into a dimensionless state by means of suitable non -dimensional variables. The technique of finite differences is implemented to solve the given model with Gaussian elimination approach. The FORTRAN language is used to make uniform algorithm for asymptotic results according to the boundary conditions. The influence of controlling parameters, such as thermal radiation parameter R d , Prandtl number P r , porosity parameter Omega , viscous dissipation parameter E c , delta thermal slip parameter, R g reduced gravity parameter and mixed convection parameter lambda is applied. Graphical representations were created to show the consequences of various parameters on velocity, temperature and magnetic field profiles along with fluctuating skin friction, fluctuating heat and oscillatory current density. It is found that velocity and temperature profile enhances as radiation parameter enhances. It is noted that the amplitude and oscillations in heat transfer and electromagnetic waves enhances as magnetic Prandtl factor increases.
Název v anglickém jazyce
Computational analysis of microgravity and viscous dissipation impact on periodical heat transfer of MHD fluid along porous radiative surface with thermal slip effects
Popis výsledku anglicky
The current thermal slip and Magnetohydrodynamic analysis plays prominent importance in heat insulation materials, polishing of artificial heart valves, heat exchangers, magnetic resonance imaging and nanoburning processes. The main objective of the existing article is to deliberate the impact of thermal slip, thermal radiation and viscous dissipation on magnetized cone embedded in a porous medium under reduced gravitational pressure. Convective heating characteristics are used to increase the rate of heating throughout the porous cone. For viscous flow along a heated and magnetized cone, the conclusions are drawn. The simulated nonlinear partial differential equations are transformed into a dimensionless state by means of suitable non -dimensional variables. The technique of finite differences is implemented to solve the given model with Gaussian elimination approach. The FORTRAN language is used to make uniform algorithm for asymptotic results according to the boundary conditions. The influence of controlling parameters, such as thermal radiation parameter R d , Prandtl number P r , porosity parameter Omega , viscous dissipation parameter E c , delta thermal slip parameter, R g reduced gravity parameter and mixed convection parameter lambda is applied. Graphical representations were created to show the consequences of various parameters on velocity, temperature and magnetic field profiles along with fluctuating skin friction, fluctuating heat and oscillatory current density. It is found that velocity and temperature profile enhances as radiation parameter enhances. It is noted that the amplitude and oscillations in heat transfer and electromagnetic waves enhances as magnetic Prandtl factor increases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Case Studies in Thermal Engineering
ISSN
2214-157X
e-ISSN
2214-157X
Svazek periodika
60
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001256751500001
EID výsledku v databázi Scopus
2-s2.0-85195377711