Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255181" target="_blank" >RIV/61989100:27740/24:10255181 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsnano.4c05061" target="_blank" >https://pubs.acs.org/doi/10.1021/acsnano.4c05061</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsnano.4c05061" target="_blank" >10.1021/acsnano.4c05061</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots
Popis výsledku v původním jazyce
Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.
Název v anglickém jazyce
Slow Hot-Exciton Cooling and Enhanced Interparticle Excitonic Coupling in HgTe Quantum Dots
Popis výsledku anglicky
Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Nano
ISSN
1936-0851
e-ISSN
1936-086X
Svazek periodika
18
Číslo periodika v rámci svazku
27
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
18011-18021
Kód UT WoS článku
001258188800001
EID výsledku v databázi Scopus
2-s2.0-85197592387