Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255240" target="_blank" >RIV/61989100:27740/24:10255240 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2666818124001980?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124001980?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.padiff.2024.100812" target="_blank" >10.1016/j.padiff.2024.100812</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation

  • Popis výsledku v původním jazyce

    This work investigates the dynamics of optical waves to the generalized coupled nonlinear fractional Helmholtz equation with quintic and cubic nonlinear effects. The evolution of broad multicomponent self-trapping beams in Kerr-type nonlinear media is described by the coupled Helmholtz equation, which also take into account spatial dispersion due to non-paraxial effects. This phenomena is particularly relevant to the progressive miniaturization of optics, where the optical wavelength is similar to the beam width. It is essential to integrate non-Kerr terms, such as the self-steepening and the self frequency shift, into the coupled Helmholtz system in order to investigate the propagation of ultrashort optical pulses in the non-paraxial domain. For optical wave solutions, nonlinear ordinary equation of the governing model is achieved by applying the fractional transformation. The different types of the solutions like bright, dark, singular and mixed type solitons are extracted by applying advanced integration methods, namely modified Sardar subequation method and new Kudryashov method. These solutions provide very useful information on how the system operates. The applied approaches are highly efficient and have significant computational capability to efficiently tackle the nonlinear systems. Additionally, we include a diverse array of graphs to demonstrate the physical interpretation of the obtained solutions in relation to a number of significant parameters, thereby highlighting the impact of fractional derivatives. In the context of the proposed model, these visualizations assist with a comprehensive understanding of the solution&apos;s behavior and characteristics. It is anticipated that these solutions may be significant in the study of wave propagation and related fields. (C) 2024 The Authors

  • Název v anglickém jazyce

    Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation

  • Popis výsledku anglicky

    This work investigates the dynamics of optical waves to the generalized coupled nonlinear fractional Helmholtz equation with quintic and cubic nonlinear effects. The evolution of broad multicomponent self-trapping beams in Kerr-type nonlinear media is described by the coupled Helmholtz equation, which also take into account spatial dispersion due to non-paraxial effects. This phenomena is particularly relevant to the progressive miniaturization of optics, where the optical wavelength is similar to the beam width. It is essential to integrate non-Kerr terms, such as the self-steepening and the self frequency shift, into the coupled Helmholtz system in order to investigate the propagation of ultrashort optical pulses in the non-paraxial domain. For optical wave solutions, nonlinear ordinary equation of the governing model is achieved by applying the fractional transformation. The different types of the solutions like bright, dark, singular and mixed type solitons are extracted by applying advanced integration methods, namely modified Sardar subequation method and new Kudryashov method. These solutions provide very useful information on how the system operates. The applied approaches are highly efficient and have significant computational capability to efficiently tackle the nonlinear systems. Additionally, we include a diverse array of graphs to demonstrate the physical interpretation of the obtained solutions in relation to a number of significant parameters, thereby highlighting the impact of fractional derivatives. In the context of the proposed model, these visualizations assist with a comprehensive understanding of the solution&apos;s behavior and characteristics. It is anticipated that these solutions may be significant in the study of wave propagation and related fields. (C) 2024 The Authors

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Partial Differential Equations in Applied Mathematics

  • ISSN

    2666-8181

  • e-ISSN

    2666-8181

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85198732120