Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255240" target="_blank" >RIV/61989100:27740/24:10255240 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124001980?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124001980?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100812" target="_blank" >10.1016/j.padiff.2024.100812</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation
Popis výsledku v původním jazyce
This work investigates the dynamics of optical waves to the generalized coupled nonlinear fractional Helmholtz equation with quintic and cubic nonlinear effects. The evolution of broad multicomponent self-trapping beams in Kerr-type nonlinear media is described by the coupled Helmholtz equation, which also take into account spatial dispersion due to non-paraxial effects. This phenomena is particularly relevant to the progressive miniaturization of optics, where the optical wavelength is similar to the beam width. It is essential to integrate non-Kerr terms, such as the self-steepening and the self frequency shift, into the coupled Helmholtz system in order to investigate the propagation of ultrashort optical pulses in the non-paraxial domain. For optical wave solutions, nonlinear ordinary equation of the governing model is achieved by applying the fractional transformation. The different types of the solutions like bright, dark, singular and mixed type solitons are extracted by applying advanced integration methods, namely modified Sardar subequation method and new Kudryashov method. These solutions provide very useful information on how the system operates. The applied approaches are highly efficient and have significant computational capability to efficiently tackle the nonlinear systems. Additionally, we include a diverse array of graphs to demonstrate the physical interpretation of the obtained solutions in relation to a number of significant parameters, thereby highlighting the impact of fractional derivatives. In the context of the proposed model, these visualizations assist with a comprehensive understanding of the solution's behavior and characteristics. It is anticipated that these solutions may be significant in the study of wave propagation and related fields. (C) 2024 The Authors
Název v anglickém jazyce
Dynamics of fractional optical solitary waves to the cubic-quintic coupled nonlinear Helmholtz equation
Popis výsledku anglicky
This work investigates the dynamics of optical waves to the generalized coupled nonlinear fractional Helmholtz equation with quintic and cubic nonlinear effects. The evolution of broad multicomponent self-trapping beams in Kerr-type nonlinear media is described by the coupled Helmholtz equation, which also take into account spatial dispersion due to non-paraxial effects. This phenomena is particularly relevant to the progressive miniaturization of optics, where the optical wavelength is similar to the beam width. It is essential to integrate non-Kerr terms, such as the self-steepening and the self frequency shift, into the coupled Helmholtz system in order to investigate the propagation of ultrashort optical pulses in the non-paraxial domain. For optical wave solutions, nonlinear ordinary equation of the governing model is achieved by applying the fractional transformation. The different types of the solutions like bright, dark, singular and mixed type solitons are extracted by applying advanced integration methods, namely modified Sardar subequation method and new Kudryashov method. These solutions provide very useful information on how the system operates. The applied approaches are highly efficient and have significant computational capability to efficiently tackle the nonlinear systems. Additionally, we include a diverse array of graphs to demonstrate the physical interpretation of the obtained solutions in relation to a number of significant parameters, thereby highlighting the impact of fractional derivatives. In the context of the proposed model, these visualizations assist with a comprehensive understanding of the solution's behavior and characteristics. It is anticipated that these solutions may be significant in the study of wave propagation and related fields. (C) 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
11
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85198732120