Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255716" target="_blank" >RIV/61989100:27740/24:10255716 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352507X24002610" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352507X24002610</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nanoso.2024.101349" target="_blank" >10.1016/j.nanoso.2024.101349</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects

  • Popis výsledku v původním jazyce

    The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering. The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions. Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.

  • Název v anglickém jazyce

    Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects

  • Popis výsledku anglicky

    The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering. The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions. Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nano-Structures &amp; Nano-Objects

  • ISSN

    2352-507X

  • e-ISSN

    2352-5088

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    "nestránkového"

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85205001770