Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255716" target="_blank" >RIV/61989100:27740/24:10255716 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352507X24002610" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352507X24002610</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nanoso.2024.101349" target="_blank" >10.1016/j.nanoso.2024.101349</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects
Popis výsledku v původním jazyce
The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering. The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions. Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.
Název v anglickém jazyce
Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects
Popis výsledku anglicky
The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering. The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions. Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano-Structures & Nano-Objects
ISSN
2352-507X
e-ISSN
2352-5088
Svazek periodika
40
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"nestránkového"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85205001770