Fixed point results in intuitionistic fuzzy pentagonal controlled metric spaces with applications to dynamic market equilibrium and satellite web coupling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255721" target="_blank" >RIV/61989100:27740/24:10255721 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303141" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0303141" target="_blank" >10.1371/journal.pone.0303141</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fixed point results in intuitionistic fuzzy pentagonal controlled metric spaces with applications to dynamic market equilibrium and satellite web coupling
Popis výsledku v původním jazyce
This manuscript contains several new spaces as the generalizations of fuzzy triple controlled metric space, fuzzy controlled hexagonal metric space, fuzzy pentagonal controlled metric space and intuitionistic fuzzy double controlled metric space. We prove the Banach fixed point theorem in the context of intuitionistic fuzzy pentagonal controlled metric space, which generalizes the previous ones in the existing literature. Further, we provide several non-trivial examples to support the main results. The capacity of intuitionistic fuzzy pentagonal controlled metric spaces to model hesitation, capture dual information, handle imperfect information, and provide a more nuanced representation of uncertainty makes them important in dynamic market equilibrium. In the context of changing market dynamics, these aspects contribute to a more realistic and flexible modelling approach. We present an application to dynamic market equilibrium and solve a boundary value problem for a satellite web coupling.
Název v anglickém jazyce
Fixed point results in intuitionistic fuzzy pentagonal controlled metric spaces with applications to dynamic market equilibrium and satellite web coupling
Popis výsledku anglicky
This manuscript contains several new spaces as the generalizations of fuzzy triple controlled metric space, fuzzy controlled hexagonal metric space, fuzzy pentagonal controlled metric space and intuitionistic fuzzy double controlled metric space. We prove the Banach fixed point theorem in the context of intuitionistic fuzzy pentagonal controlled metric space, which generalizes the previous ones in the existing literature. Further, we provide several non-trivial examples to support the main results. The capacity of intuitionistic fuzzy pentagonal controlled metric spaces to model hesitation, capture dual information, handle imperfect information, and provide a more nuanced representation of uncertainty makes them important in dynamic market equilibrium. In the context of changing market dynamics, these aspects contribute to a more realistic and flexible modelling approach. We present an application to dynamic market equilibrium and solve a boundary value problem for a satellite web coupling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
—
Kód UT WoS článku
001305462200037
EID výsledku v databázi Scopus
2-s2.0-85202672003