Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255811" target="_blank" >RIV/61989100:27740/24:10255811 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-68830-9" target="_blank" >https://www.nature.com/articles/s41598-024-68830-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-68830-9" target="_blank" >10.1038/s41598-024-68830-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles
Popis výsledku v původním jazyce
In the present work, a simple intelligence-based computation of artificial neural networks with the Levenberg-Marquardt backpropagation algorithm is developed to analyze the new ferromagnetic hybrid nanofluid flow model in the presence of a magnetic dipole within the context of flow over a stretching sheet. A combination of cobalt and iron (III) oxide (Co-Fe2O3) is strategically selected as ferromagnetic hybrid nanoparticles within the base fluid, water. The initial representation of the developed ferromagnetic hybrid nanofluid flow model, which is a system of highly nonlinear partial differential equations, is transformed into a system of nonlinear ordinary differential equations using appropriate similarity transformations. The reference data set of the possible outcomes is obtained from bvp4c for varying the parameters of the ferromagnetic hybrid nanofluid flow model. The estimated solutions of the proposed model are described during the testing, training, and validation phases of the backpropagated neural network. The performance evaluation and comparative study of the algorithm are carried out by regression analysis, error histograms, function fitting graphs, and mean squared error results. The findings of our study analyze the increasing effect of the ferrohydrodynamic interaction parameter β to enhance the temperature and velocity profiles, while increasing the thermal relaxation parameter α decreases the temperature profile. The performance on MSE was shown for the temperature and velocity profiles of the developed model about 9.1703eMINUS SIGN 10, 7.1313eeMINUS SIGN 10, 3.1462eMINUS SIGN 10, and 4.8747eMINUS SIGN 10. The accuracy of the artificial neural networks with the Levenberg-Marquardt algorithm method is confirmed through various analyses and comparative results with the reference data. The purpose of this study is to enhance understanding of ferromagnetic hybrid nanofluid flow models using artificial neural networks with the Levenberg-Marquardt algorithm, offering precise analysis of key parameter effects on temperature and velocity profiles. Future studies will provide novel soft computing methods that leverage artificial neural networks to effectively solve problems in fluid mechanics and expand to engineering applications, improving their usefulness in tackling real-world problems. (C) The Author(s) 2024.
Název v anglickém jazyce
Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles
Popis výsledku anglicky
In the present work, a simple intelligence-based computation of artificial neural networks with the Levenberg-Marquardt backpropagation algorithm is developed to analyze the new ferromagnetic hybrid nanofluid flow model in the presence of a magnetic dipole within the context of flow over a stretching sheet. A combination of cobalt and iron (III) oxide (Co-Fe2O3) is strategically selected as ferromagnetic hybrid nanoparticles within the base fluid, water. The initial representation of the developed ferromagnetic hybrid nanofluid flow model, which is a system of highly nonlinear partial differential equations, is transformed into a system of nonlinear ordinary differential equations using appropriate similarity transformations. The reference data set of the possible outcomes is obtained from bvp4c for varying the parameters of the ferromagnetic hybrid nanofluid flow model. The estimated solutions of the proposed model are described during the testing, training, and validation phases of the backpropagated neural network. The performance evaluation and comparative study of the algorithm are carried out by regression analysis, error histograms, function fitting graphs, and mean squared error results. The findings of our study analyze the increasing effect of the ferrohydrodynamic interaction parameter β to enhance the temperature and velocity profiles, while increasing the thermal relaxation parameter α decreases the temperature profile. The performance on MSE was shown for the temperature and velocity profiles of the developed model about 9.1703eMINUS SIGN 10, 7.1313eeMINUS SIGN 10, 3.1462eMINUS SIGN 10, and 4.8747eMINUS SIGN 10. The accuracy of the artificial neural networks with the Levenberg-Marquardt algorithm method is confirmed through various analyses and comparative results with the reference data. The purpose of this study is to enhance understanding of ferromagnetic hybrid nanofluid flow models using artificial neural networks with the Levenberg-Marquardt algorithm, offering precise analysis of key parameter effects on temperature and velocity profiles. Future studies will provide novel soft computing methods that leverage artificial neural networks to effectively solve problems in fluid mechanics and expand to engineering applications, improving their usefulness in tackling real-world problems. (C) The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001285457700072
EID výsledku v databázi Scopus
2-s2.0-85200499565